Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSystems ; 4(2)2019.
Artigo em Inglês | MEDLINE | ID: mdl-31020039

RESUMO

Filamentous fungi possess great potential as sources of medicinal bioactive compounds, such as antibiotics, but efficient production is hampered by a limited understanding of how their metabolism is regulated. We investigated the metabolism of six secondary metabolite-producing fungi of the Penicillium genus during nutrient depletion in the stationary phase of batch fermentations and assessed conserved metabolic responses across species using genome-wide transcriptional profiling. A coexpression analysis revealed that expression of biosynthetic genes correlates with expression of genes associated with pathways responsible for the generation of precursor metabolites for secondary metabolism. Our results highlight the main metabolic routes for the supply of precursors for secondary metabolism and suggest that the regulation of fungal metabolism is tailored to meet the demands for secondary metabolite production. These findings can aid in identifying fungal species that are optimized for the production of specific secondary metabolites and in designing metabolic engineering strategies to develop high-yielding fungal cell factories for production of secondary metabolites. IMPORTANCE Secondary metabolites are a major source of pharmaceuticals, especially antibiotics. However, the development of efficient processes of production of secondary metabolites has proved troublesome due to a limited understanding of the metabolic regulations governing secondary metabolism. By analyzing the conservation in gene expression across secondary metabolite-producing fungal species, we identified a metabolic signature that links primary and secondary metabolism and that demonstrates that fungal metabolism is tailored for the efficient production of secondary metabolites. The insight that we provide can be used to develop high-yielding fungal cell factories that are optimized for the production of specific secondary metabolites of pharmaceutical interest.

2.
Artigo em Inglês | MEDLINE | ID: mdl-30598828

RESUMO

BACKGROUND: Filamentous fungi are important producers of secondary metabolites, low molecular weight molecules that often have bioactive properties. Calbistrin A is a secondary metabolite with an interesting structure that was recently found to have bioactivity against leukemia cells. It consists of two polyketides linked by an ester bond: a bicyclic decalin containing polyketide with structural similarities to lovastatin, and a linear 12 carbon dioic acid structure. Calbistrin A is known to be produced by several uniseriate black Aspergilli, Aspergillus versicolor-related species, and Penicillia. Penicillium decumbens produces calbistrin A and B as well as several putative intermediates of the calbistrin pathway, such as decumbenone A-B and versiol. RESULTS: A comparative genomics study focused on the polyketide synthase (PKS) sets found in three full genome sequence calbistrin producing fungal species, P. decumbens, A. aculeatus and A. versicolor, resulted in the identification of a novel, putative 13-membered calbistrin producing gene cluster (calA to calM). Implementation of the CRISPR/Cas9 technology in P. decumbens allowed the targeted deletion of genes encoding a polyketide synthase (calA), a major facilitator pump (calB) and a binuclear zinc cluster transcription factor (calC). Detailed metabolic profiling, using UHPLC-MS, of the ∆calA (PKS) and ∆calC (TF) strains confirmed the suspected involvement in calbistrin productions as neither strains produced calbistrin nor any of the putative intermediates in the pathway. Similarly analysis of the excreted metabolites in the ∆calB (MFC-pump) strain showed that the encoded pump was required for efficient export of calbistrin A and B. CONCLUSION: Here we report the discovery of a gene cluster (calA-M) involved in the biosynthesis of the polyketide calbistrin in P. decumbens. Targeted gene deletions proved the involvement of CalA (polyketide synthase) in the biosynthesis of calbistrin, CalB (major facilitator pump) for the export of calbistrin A and B and CalC for the transcriptional regulation of the cal-cluster. This study lays the foundation for further characterization of the calbistrin biosynthetic pathway in multiple species and the development of an efficient calbistrin producing cell factory.

3.
Artigo em Inglês | MEDLINE | ID: mdl-29075506

RESUMO

BACKGROUND: Penicillium species are important producers of bioactive secondary metabolites. However, the immense diversity of the fungal kingdom is only scarcely represented in industrial bioprocesses and the upscaling of compound production remains a costly and labor intensive challenge. In order to facilitate the development of novel secondary metabolite producing processes, two routes are typically explored: optimization of the native producer or transferring the enzymatic pathway into a heterologous host. Recent genome sequencing of ten Penicillium species showed the vast amount of secondary metabolite gene clusters present in their genomes, and makes them accessible for rational strain improvement. In this study, we aimed to characterize the potential of these ten Penicillium species as native producing cell factories by testing their growth performance and secondary metabolite production in submerged cultivations. RESULTS: Cultivation of the fungal species in controlled submerged bioreactors showed that the ten wild type Penicillium species had promising, highly reproducible growth characteristics in two different media. Analysis of the secondary metabolite production using liquid chromatography coupled with high resolution mass spectrometry proved that the species produced a broad range of secondary metabolites, at different stages of the fermentations. Metabolite profiling for identification of the known compounds resulted in identification of 34 metabolites; which included several with bioactive properties such as antibacterial, antifungal and anti-cancer activities. Additionally, several novel species-metabolite relationships were found. CONCLUSIONS: This study demonstrates that the fermentation characteristics and the highly reproducible performance in bioreactors of ten recently genome sequenced Penicillium species should be considered as very encouraging for the application of native hosts for production via submerged fermentation. The results are particularly promising for the potential development of the ten analysed Penicillium species for production of novel bioactive compounds via submerged fermentations.

4.
Nat Microbiol ; 2: 17044, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28368369

RESUMO

Filamentous fungi produce a wide range of bioactive compounds with important pharmaceutical applications, such as antibiotic penicillins and cholesterol-lowering statins. However, less attention has been paid to fungal secondary metabolites compared to those from bacteria. In this study, we sequenced the genomes of 9 Penicillium species and, together with 15 published genomes, we investigated the secondary metabolism of Penicillium and identified an immense, unexploited potential for producing secondary metabolites by this genus. A total of 1,317 putative biosynthetic gene clusters (BGCs) were identified, and polyketide synthase and non-ribosomal peptide synthetase based BGCs were grouped into gene cluster families and mapped to known pathways. The grouping of BGCs allowed us to study the evolutionary trajectory of pathways based on 6-methylsalicylic acid (6-MSA) synthases. Finally, we cross-referenced the predicted pathways with published data on the production of secondary metabolites and experimentally validated the production of antibiotic yanuthones in Penicillia and identified a previously undescribed compound from the yanuthone pathway. This study is the first genus-wide analysis of the genomic diversity of Penicillia and highlights the potential of these species as a source of new antibiotics and other pharmaceuticals.


Assuntos
Vias Biossintéticas/genética , Genoma Fúngico , Família Multigênica , Penicillium/genética , Metabolismo Secundário/genética , Aciltransferases/genética , Aciltransferases/metabolismo , Antibacterianos/biossíntese , Fungos/genética , Perfilação da Expressão Gênica , Variação Genética , Genômica , Ligases/genética , Ligases/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Penicillium/metabolismo , Peptídeo Sintases/genética , Peptídeo Sintases/metabolismo , Filogenia , Policetídeo Sintases/genética , Terpenos/metabolismo
5.
Sci Rep ; 6: 35112, 2016 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-27739446

RESUMO

A new soil-borne species belonging to the Penicillium section Canescentia is described, Penicillium arizonense sp. nov. (type strain CBS 141311T = IBT 12289T). The genome was sequenced and assembled into 33.7 Mb containing 12,502 predicted genes. A phylogenetic assessment based on marker genes confirmed the grouping of P. arizonense within section Canescentia. Compared to related species, P. arizonense proved to encode a high number of proteins involved in carbohydrate metabolism, in particular hemicellulases. Mining the genome for genes involved in secondary metabolite biosynthesis resulted in the identification of 62 putative biosynthetic gene clusters. Extracts of P. arizonense were analysed for secondary metabolites and austalides, pyripyropenes, tryptoquivalines, fumagillin, pseurotin A, curvulinic acid and xanthoepocin were detected. A comparative analysis against known pathways enabled the proposal of biosynthetic gene clusters in P. arizonense responsible for the synthesis of all detected compounds except curvulinic acid. The capacity to produce biomass degrading enzymes and the identification of a high chemical diversity in secreted bioactive secondary metabolites, offers a broad range of potential industrial applications for the new species P. arizonense. The description and availability of the genome sequence of P. arizonense, further provides the basis for biotechnological exploitation of this species.


Assuntos
Fatores Biológicos/análise , Vias Biossintéticas/genética , Genoma Fúngico , Penicillium/química , Metabolismo Secundário/genética , Penicillium/classificação , Penicillium/genética , Penicillium/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Microbiologia do Solo
6.
Biotechnol Biofuels ; 9: 173, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27525042

RESUMO

BACKGROUND: Acetic acid, released during hydrolysis of lignocellulosic feedstocks for second generation bioethanol production, inhibits yeast growth and alcoholic fermentation. Yeast biomass generated in a propagation step that precedes ethanol production should therefore express a high and constitutive level of acetic acid tolerance before introduction into lignocellulosic hydrolysates. However, earlier laboratory evolution strategies for increasing acetic acid tolerance of Saccharomyces cerevisiae, based on prolonged cultivation in the presence of acetic acid, selected for inducible rather than constitutive tolerance to this inhibitor. RESULTS: Preadaptation in the presence of acetic acid was shown to strongly increase the fraction of yeast cells that could initiate growth in the presence of this inhibitor. Serial microaerobic batch cultivation, with alternating transfers to fresh medium with and without acetic acid, yielded evolved S. cerevisiae cultures with constitutive acetic acid tolerance. Single-cell lines isolated from five such evolution experiments after 50-55 transfers were selected for further study. An additional constitutively acetic acid tolerant mutant was selected after UV-mutagenesis. All six mutants showed an increased fraction of growing cells upon a transfer from a non-stressed condition to a medium containing acetic acid. Whole-genome sequencing identified six genes that contained (different) mutations in multiple acetic acid-tolerant mutants. Haploid segregation studies and expression of the mutant alleles in the unevolved ancestor strain identified causal mutations for the acquired acetic acid tolerance in four genes (ASG1, ADH3, SKS1 and GIS4). Effects of the mutations in ASG1, ADH3 and SKS1 on acetic acid tolerance were additive. CONCLUSIONS: A novel laboratory evolution strategy based on alternating cultivation cycles in the presence and absence of acetic acid conferred a selective advantage to constitutively acetic acid-tolerant mutants and may be applicable for selection of constitutive tolerance to other stressors. Mutations in four genes (ASG1, ADH3, SKS1 and GIS4) were identified as causative for acetic acid tolerance. The laboratory evolution strategy as well as the identified mutations can contribute to improving acetic acid tolerance in industrial yeast strains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...