Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mycorrhiza ; 32(5-6): 425-438, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36207539

RESUMO

Climate change, the shortage of fertilizers and reduced land for cultivation have drawn attention to the potential aid provided by soil-borne organisms. Arbuscular mycorrhizal fungi (AMF) offer a wide range of ecosystem benefits and hence, understanding the mechanisms that control AMF occurrence and maintenance is essential for resilient crop production. We conducted a survey of 123 soybean fields located across a 75,000-km2 area of Argentina to explore AMF community composition and to quantify the impact of soil, climate, and geographical distance on these key soil organisms. First, based upon morphological identification of spores, we compiled a list of the AMF species found in the studied area and identified Acaulospora scrobiculata and Glomus fuegianum as the most frequent species. G. fuegianum abundance was negatively correlated with precipitation seasonality and positively correlated with mean annual precipitation as well as mycorrhizal colonisation of soybean roots. Second, we observed that species richness was negatively correlated with soil P availability (Bray I), clay content and mean annual precipitation. Finally, based on partitioning variation analysis, we found that AMF exhibited spatial patterning at a broad scale. Therefore, we infer that geographical distance was positively associated with spore community composition heterogeneity across the region. Nevertheless, we highlight the importance of precipitation sensitivity of frequent species, overall AMF richness and community composition, revealing a crucial challenge to forthcoming agriculture considering an expected change in global climate patterns.


Assuntos
Fabaceae , Micorrizas , Biodiversidade , Argila , Ecossistema , Fertilizantes , Fungos/fisiologia , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo , Glycine max
2.
New Phytol ; 235(1): 320-332, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35302658

RESUMO

The great majority of plants gain access to soil nutrients and enhance their performance under stressful conditions through symbiosis with arbuscular mycorrhizal fungi (AMF). The benefits that AMF confer vary among species and taxonomic groups. However, a comparative analysis of the different benefits among AMF has not yet been performed. We conducted a global meta-analysis of recent studies testing the benefits of individual AMF species and main taxonomic groups in terms of plant performance (growth and nutrition). Separately, we examined AMF benefits to plants facing biotic (pathogens, parasites, and herbivores) and abiotic (drought, salinity, and heavy metals) stress. AMF had stronger positive effects on phosphorus nutrition than on plant growth and nitrogen nutrition and the effects on the growth of plants facing biotic and abiotic stresses were similarly positive. While the AMF taxonomic groups showed positive effects on plant performance either with or without stress, Diversisporales were the most beneficial to plants without stress and Gigasporales to plants facing biotic stress. Our results provide a comprehensive analysis of the benefits of different AMF species and taxonomic groups on plant performance and useful insights for their management and use as bio-inoculants for agriculture and restoration.


Assuntos
Glomeromycota , Micorrizas , Raízes de Plantas , Plantas/microbiologia , Simbiose
3.
Environ Microbiol ; 17(8): 2709-20, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25243926

RESUMO

Land-use changes and forest fragmentation have strong impact on biodiversity. However, little is known about the influence of new landscape configurations on arbuscular mycorrhizal fungal (AMF) community composition. We used 454 pyrosequencing to assess AMF diversity in plant roots from a fragmented forest. We detected 59 virtual taxa (VT; phylogenetically defined operational taxonomic units) of AMF - including 10 new VT - in the roots of Euphorbia acerensis. AMF communities were mainly composed of members of family Glomeraceae and were similar throughout the fragmented landscape, despite variation in forest fragment size (i.e. small, medium and large) and isolation (i.e. varying pairwise distances). AMF communities in forest fragments were phylogenetically clustered compared with the global, but not regional and local AMF taxon pools. This indicates that non-random community assembly processes possibly related to dispersal limitation at a large scale, rather than habitat filtering or biotic interactions, may be important in structuring the AMF communities. In this system, forest fragmentation did not appear to influence AMF community composition in the roots of the ruderal plant. Whether this is true for AMF communities in soil and the roots of other ecological groups of host plants or in other habitats deserves further study.


Assuntos
Euphorbia/microbiologia , Florestas , Fungos/classificação , Glomeromycota/genética , Microbiota , Micorrizas , Sequência de Bases , Biodiversidade , DNA Fúngico/genética , Fungos/genética , Fungos/isolamento & purificação , Filogenia , Análise de Sequência de DNA , Solo , Microbiologia do Solo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...