Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 7198, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938250

RESUMO

The universality of the strange metal phase in many quantum materials is often attributed to the presence of a quantum critical point (QCP), a zero-temperature phase transition ruled by quantum fluctuations. In cuprates, where superconductivity hinders direct QCP observation, indirect evidence comes from the identification of fluctuations compatible with the strange metal phase. Here we show that the recently discovered charge density fluctuations (CDF) possess the right properties to be associated to a quantum phase transition. Using resonant x-ray scattering, we studied the CDF in two families of cuprate superconductors across a wide doping range (up to p = 0.22). At p* ≈ 0.19, the putative QCP, the CDF intensity peaks, and the characteristic energy Δ is minimum, marking a wedge-shaped region in the phase diagram indicative of a quantum critical behavior, albeit with anomalies. These findings strengthen the role of charge order in explaining strange metal phenomenology and provide insights into high-temperature superconductivity.

2.
Nanomaterials (Basel) ; 11(8)2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34443718

RESUMO

Two-dimensional superconductors with disorder at the nanoscale can host a variety of intriguing phenomena. The superconducting transition is marked by a broad percolative transition with a long tail of the resistivity as function of the temperature. The fragile filamentary superconducting clusters, forming at low temperature, can be strengthened further by proximity effect with the surrounding metallic background, leading to an enhancement of the superfluid stiffness well below the percolative transition. Finite-frequency dissipation effects, e.g., related to the appearance of thermally excited vortices, can also significantly contribute to the resulting physics. Here, we propose a random impedance model to investigate the role of dissipation effects in the formation and strengthening of fragile superconducting clusters, discussing the solution within the effective medium theory.

3.
Phys Rev Lett ; 124(19): 197602, 2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32469539

RESUMO

Raman experiments on bulk FeSe revealed that the low-frequency part of the B_{1g} Raman response R_{B1g}(Ω), which probes nematic fluctuations, rapidly decreases below the nematic transition at T_{n}∼85 K. Such behavior is expected when a gap opens up and at a first glance is inconsistent with the fact that FeSe remains a metal below T_{n}. We argue that the drop of R_{B1g}(Ω) can be ascribed to the fact that the nematic order drastically changes the orbital content of low-energy excitations near hole and electron pockets, making them nearly mono-orbital. In this situation, the B_{1g} Raman response gets reduced by the same vertex corrections that enforce charge conservation in the symmetric Raman channel. The reduction holds at low frequencies and gives rise to gaplike behavior of R_{B1g}(Ω). We also show that the enhancement of the B_{1g} Raman response near T_{n} is consistent with the sign change of the nematic order parameter between hole and electron pockets.

4.
Phys Rev Lett ; 119(25): 256801, 2017 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-29303343

RESUMO

The spin galvanic effect (SGE) describes the conversion of a nonequilibrium spin polarization into a transverse charge current. Recent experiments have demonstrated a large conversion efficiency for the two-dimensional electron gas formed at the interface between two insulating oxides, LaAlO_{3} and SrTiO_{3}. Here, we analyze the SGE for oxide interfaces within a three-band model for the Ti t_{2g} orbitals which displays an interesting variety of effective spin-orbit couplings in the individual bands that contribute differently to the spin-charge conversion. Our analytical approach is supplemented by a numerical treatment where we also investigate the influence of disorder and temperature, which turns out to be crucial to providing an appropriate description of the experimental data.

5.
Artigo em Inglês | MEDLINE | ID: mdl-26442248

RESUMO

The understanding of structure-function relationships in normal and pathologic mammalian tissues is at the basis of a tissue engineering (TE) approach for the development of biological substitutes to restore or improve tissue function. In this framework, it is interesting to investigate engineered bone tissue, formed when porous ceramic constructs are loaded with bone marrow stromal cells (BMSC) and implanted in vivo. To monitor the relation between bone formation and vascularization, it is important to achieve a detailed imaging and a quantitative description of the complete three-dimensional vascular network in such constructs. Here, we used synchrotron X-ray phase-contrast micro-tomography to visualize and analyze the three-dimensional micro-vascular networks in bone-engineered constructs, in an ectopic bone formation mouse-model. We compared samples seeded and not seeded with BMSC, as well as samples differently stained or unstained. Thanks to the high quality of the images, we investigated the 3D distribution of both vessels and collagen matrix and we obtained quantitative information for all different samples. We propose our approach as a tool for quantitative studies of angiogenesis in TE and for any pre-clinical investigation where a quantitative analysis of the vascular network is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...