Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
1.
Int J Biol Macromol ; 221: 784-795, 2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36099998

RESUMO

Phenylketonuria (PKU) is a metabolic disorder connected to an excess of phenylalanine (Phe) in the blood and tissues, with neurological consequences. The disease's molecular bases seem to be related to the accumulation of Phe at the cell membrane surface. Radiological outcomes in the brain demonstrate decreased water diffusivity in white matter, involving axon dysmyelination of not yet understood origin. We used a biophysical approach and model membranes to extend our knowledge of Phe-membrane interaction by clarifying Phe's propensity to affect membrane structure and dynamics based on lipid composition, with emphasis on modulating cholesterol and glycolipid components to mimic raft domains and myelin sheath membranes. Phe showed affinity for the investigated membrane mimics, mainly affecting the Phe-facing membrane leaflet. The surfaces of our neuronal membrane raft mimics were strong anchoring sites for Phe, showing rigidifying effects. From a therapeutic perspective, we further investigated the role of doxycycline, known to disturb Phe packing, unveiling its action as a competitor in Phe interactions with the membrane, suggesting its potential for treatment in the early stages of PKU. Our results suggest how Phe accumulation in extracellular fluids can impede normal growth of myelin sheaths by interfering with membrane slipping and by remodulating free water and myelin-associated water contents.


Assuntos
Fenilalanina , Fenilcetonúrias , Humanos , Glicolipídeos , Encéfalo , Água
2.
J Colloid Interface Sci ; 561: 426-438, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31785936

RESUMO

The work presents the characterization of Pluronic F127 micellar solutions in presence of hyaluronic acid in semi-dilute regime. The effects of the nature and salt concentration are investigated by differential scanning calorimetry and small angle neutron scattering. Hyaluronic acid reduces the critical micellar temperature to the same extend as an increase of the ionic strength. Within the investigated HA concentration range, the size and shape of the micelles are not modified by the addition of HA but their dispersion state depends on the salt concentration. By increasing the ionic strength we observe the formation of small micellar clusters which organize into a face-centered cubic liquid crystalline phase at high salt concentration. This behavior is reinforced by increasing the HA concentration or molecular weight. The nature of the salt plays also a role and divalent cations such as Ca2+ promote the clustering of micelles and their crystallization. The origin of the aggregative behavior is the change of the HA chain conformation -from stretched to coil- by addition of salt which in turn induces an excluded volume around the micelles and exerts a depletion interaction.

3.
Langmuir ; 34(44): 13395-13408, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30350691

RESUMO

The insertion in nonionic polymer micelles (Pluronics F127) of seven essential oils and some of the pure compounds that compose them was investigated by complementary differential scanning calorimetry, small-angle X-ray, and neutron scattering (SAXS and SANS). The study revealed various insertion and swelling behaviors for the different oil molecules, an evidence of different interaction mechanisms involved between oils and Pluronic monomers. Thermodynamically, the addition of oil increased the micellization enthalpy due to an enhanced release of water molecules, leading subsequently to a decrease of the critical micellar temperature (CMT). Structurally, with oil, SANS revealed the presence of large aggregates at lower temperature than the CMT for which their size is maximal. Above the CMT, the size decreased and the equilibrium was reached a few degrees after the temperature corresponding to the maximum of the endothermic peak. At 37 °C, the detailed combined SANS and SAXS analysis demonstrated a partial phase separation between the oil and the poly(propylene oxide) core. The hydrophilic stabilizing poly(ethylene oxide) shell remains unchanged.

4.
J Colloid Interface Sci ; 487: 493-503, 2017 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-27816868

RESUMO

The self-assembly of dilute aqueous solutions of a ternary surfactant mixture and rhamnolipid biosurfactant/surfactant mixtures has been studied by small angle neutron scattering. In the ternary surfactant mixture of octaethylene glycol monododecyl ether, C12E8, sodium dodecyl 6-benzene sulfonate, LAS, and sodium dioxyethylene monododecyl sulfate, SLES, small globular interacting micelles are observed over the entire composition and concentration range studied. The modelling of the scattering data strongly supports the assumption that the micelle compositions are close to the solution compositions. In the 5-component rhamnolipid/surfactant mixture of the mono-rhamnose, R1, di-rhamnose, R2, rhamnolipids with C12E8/LAS/SLES, globular micelles are observed over much of the concentration and composition range studied. However, for solutions relatively rich in rhamnolipid and LAS, lamellar/micellar coexistence is observed. The transition from globular to more planar structures arises from a synergistic packing in the 5 component mixture. It is not observed in the individual components nor in the ternary C12E8/LAS/SLES mixture at these relatively low concentrations. The results provide an insight into how synergistic packing effects can occur in the solution self-assembly of complex multi-component surfactant mixtures, and give rise to an unexpected evolution in the phase behaviour.


Assuntos
Alcanossulfonatos/química , Glicolipídeos/química , Tensoativos/química , Água/química , Benzenossulfonatos/química , Micelas , Difração de Nêutrons , Polietilenoglicóis/química , Ramnose/química , Espalhamento a Baixo Ângulo , Dodecilsulfato de Sódio/análogos & derivados , Dodecilsulfato de Sódio/química , Soluções , Tensão Superficial
5.
J Chem Phys ; 145(16): 164904, 2016 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-27802617

RESUMO

Form fluctuations of microemulsion droplets are observed in experiments using dielectric spectroscopy (DS) and neutron spin echo spectroscopy (NSE). Previous work on dioctyl sodium sulfosuccinate based water in oil microemulsions in the droplet phase has shown that adding a water soluble polymer (Polyethylene glycol M = 1500 g mol-1) modifies these fluctuations. While for small droplet sizes (water core radius rc < 37 Å) compared to the size of the polymer both methods consistently showed a reduction in the bending modulus of the surfactant shell as a result of polymer addition, dielectric spectroscopy suggests the opposite behaviour for large droplets. This observation is now confirmed by NSE experiments on large droplets. Structural changes due to polymer addition are qualitatively independent of droplet size. Dynamical properties, however, display a clear variation with the number of polymer chains per droplet, leading to the observed changes in the bending modulus. Furthermore, the contribution of structural and dynamical properties on the changes in bending modulus shifts in weight. With increasing droplet size, we initially find dominating finite size effects and a changeover to a system, where interactions between the confined polymer and the surfactant shell dominate the bending modulus.

6.
Soft Matter ; 10(46): 9362-72, 2014 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-25342439

RESUMO

The correlation between the growth behaviour and geometrical shape for CTAB-rich mixed micelles formed by the cationic surfactant hexadecyl trimethyl ammonium bromide (CTAB) and the anionic surfactant sodium octyl sulphate (SOS) has been investigated with small-angle neutron scattering (SANS). Small tablet-shaped micelles formed by CTAB are found to grow only weakly in size with increasing surfactant concentration. The extent of growth becomes increasingly stronger as the fraction of SOS is increased. At higher fractions of SOS, a rather weak growth at low surfactant concentrations is followed by a sharp increase in aggregation numbers beyond a certain surfactant concentration. Such an abrupt transition from weakly to strongly growing micelles has been observed in the past for several micellar systems and is usually referred to as the second critical micelle concentration. The growth behaviour has been rationalized from a theoretical point of view by means of employing the recently developed general micelle model. The theory excellently predicts micellar growth behaviours as well as the observed correlation between the geometrical shape and micellar growth. In accordance, both width and length are found to slightly increase for weakly growing tablet-shaped micelles. On the other hand, strongly growing micelles that are observed above the second cmc display a completely different behaviour, according to which the length increases considerably while the width of the micelles decreases. Most interestingly, by means of optimizing the agreement between the general micelle model and experimentally determined aggregation numbers, we are able to determine the three bending elasticity constants: spontaneous curvature, bending rigidity and saddle-splay constant.

7.
J Chem Phys ; 141(8): 084903, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25173041

RESUMO

We investigate the structure and shell dynamics of the droplet phase in water/AOT/octane microemulsions with polyethyleneglycol (MW = 1500) molecules loaded in the droplets. Size and polydispersity of the droplets is determined with small angle X-ray scattering and small angle neutron scattering experiments. Shell fluctuations are measured with neutron spin echo spectroscopy and related to the dynamic percolation seen in dielectric spectroscopy. Shell fluctuations are found to be well described by the bending modulus of the shell and the viscosities inside and outside the droplets. Addition of the polymer decreases the modulus for small droplets. For large droplets the opposite is found as percolation temperature shifts to higher values.

8.
Langmuir ; 30(34): 10471-80, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25095719

RESUMO

We have investigated the effect of doping the self-assembling octapeptide FEFEFKFK (F, phenylalanine; E, glutamic acid; K, lysine) hydrogels with various amounts of thermoresponsive conjugate of FEFEFKFK and poly(N-isopropylacrylamide) (PNIPAAm) in order to create novel hydrogels. The samples were characterized using a range of techniques including microdifferential scanning calorimetry (µDSC), oscillatory rheology, transmission electron microscopy (TEM), atomic force microscopy (AFM), and small angle neutron scattering (SANS). The peptide from the conjugate was shown to be incorporated into the peptide fiber, resulting in the polymer being anchored to the peptide fiber. The conjugation of the polymer to the peptide and its anchoring to the peptide fibers did not affect its lower critical solution temperature (LCST). On the other hand, it did result in a decrease in the LCST enthalpy and a significant increase in the G' of the hydrogels, suggesting the presence of hydrogen bond interactions between the peptide and the polymer. As a result, the polymer was found to adopt a fibrillar arrangement tightly covering the peptide fiber. The polymer was still found to go through a conformational change at the LCST, suggesting that it collapses onto the peptide fiber. On the other hand, the fibrillar network was found to be mainly unaffected by the polymer LCST. These changes at the LCST were also found to be fully reversible. The nature of the interaction between the polymer and the peptide was shown to have a significant effect on the conformation adopted by the polymer around the fibers and the mechanical properties of the hydrogels.


Assuntos
Hidrogéis/química , Peptídeos/química , Polímeros/química , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Reologia , Espalhamento de Radiação
9.
Langmuir ; 30(16): 4694-702, 2014 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-24738889

RESUMO

The effect of different trivalent counterions, Al(3+), Cr(3+), Sc(3+), Gd(3+), and La(3+), on the surface adsorption and Al(3+), Cr(3+), and Sc(3+) for solution self-assembly of the anionic surfactant sodium polyethylene glycol monododecyl ether sulfate has been studied by neutron reflectivity and small angle neutron scattering. The strong binding and complexation between the trivalent counterions and the anionic surfactant result in significant micellar growth and the formation of surface multilayer structures at the air-water interface at relatively low counterion concentrations. Broadly similar surface and solution behaviors are observed for the different trivalent counterions. The evolution in the surface and solution structures in detail depends upon the nature of the counterion, its hydrated radius and its strength of binding. Exceptionally the addition of Cr(3+) counterions have a less pronounced effect. This is attributed to a greater reluctance for exchange within the primary hydration shell for Cr(3+) ions, which results in a shielding of the electrostatic interactions and a reduced surfactant-counterion binding.

10.
Phys Med ; 30(2): 160-70, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23735838

RESUMO

This work aims at investigating the impact of treating breast cancer using different radiation therapy (RT) techniques--forwardly-planned intensity-modulated, f-IMRT, inversely-planned IMRT and dynamic conformal arc (DCART) RT--and their effects on the whole-breast irradiation and in the undesirable irradiation of the surrounding healthy tissues. Two algorithms of iPlan BrainLAB treatment planning system were compared: Pencil Beam Convolution (PBC) and commercial Monte Carlo (iMC). Seven left-sided breast patients submitted to breast-conserving surgery were enrolled in the study. For each patient, four RT techniques--f-IMRT, IMRT using 2-fields and 5-fields (IMRT2 and IMRT5, respectively) and DCART - were applied. The dose distributions in the planned target volume (PTV) and the dose to the organs at risk (OAR) were compared analyzing dose-volume histograms; further statistical analysis was performed using IBM SPSS v20 software. For PBC, all techniques provided adequate coverage of the PTV. However, statistically significant dose differences were observed between the techniques, in the PTV, OAR and also in the pattern of dose distribution spreading into normal tissues. IMRT5 and DCART spread low doses into greater volumes of normal tissue, right breast, right lung and heart than tangential techniques. However, IMRT5 plans improved distributions for the PTV, exhibiting better conformity and homogeneity in target and reduced high dose percentages in ipsilateral OAR. DCART did not present advantages over any of the techniques investigated. Differences were also found comparing the calculation algorithms: PBC estimated higher doses for the PTV, ipsilateral lung and heart than the iMC algorithm predicted.


Assuntos
Algoritmos , Mama/efeitos da radiação , Planejamento da Radioterapia Assistida por Computador/métodos , Neoplasias da Mama/radioterapia , Feminino , Humanos , Método de Monte Carlo , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/efeitos adversos
11.
Langmuir ; 29(44): 13359-66, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24093727

RESUMO

Small-angle neutron scattering has been used to study the self-assembly of the anionic surfactant sodium polyethylene glycol monoalkyl ether sulfate in aqueous solution and in the presence of Al(3+) multivalent counterions in the form of AlCl3. The addition of the Al(3+) ions promotes significant micellar growth of the initially globular micelles into highly elongated structures until ultimately lamellar structures form. Increasing the size of the polyethylene oxide, EO, group progressively suppresses micellar growth before lamellar formation. Reducing the alkyl chain length has a similar effect on the structural evolution. Both trends are associated with increased solubility with increasing EO group size and decreasing alkyl chain length. Both the size of the EO group and the length of the alkyl chain affect sodium diethylene glycol monododecyl ether sulfate/Al(3+) complex formation and drive lamellar formation to progressively higher AlCl3 concentrations.

12.
Langmuir ; 29(12): 3912-23, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23445348

RESUMO

The impact of Ca(2+) counterions on the adsorption at the air-water interface and self-assembly in aqueous solution of the rhamnolipid biosurfactant and its mixture with the anionic surfactant sodium dodecylbenzenesulfonate, LAS, has been studied using neutron reflectometry and small-angle neutron scattering. The results illustrate how rhamnolipids are calcium tolerant and how their blending with conventional anionic surfactants improves the calcium tolerance of the anionic surfactant. Ca(2+) has relatively little effect upon the adsorption and self-assembly of the monorhamnose, R1, and dirhamnose, R2, rhamnolipids, even at high pH, due to their predominantly nonionic nature. For R1/R2 mixtures the addition of Ca(2+) has little impact upon the adsorbed amount or the surface composition. For R2/LAS mixtures the addition of Ca(2+) results in an increased adsorption and a surface slightly richer in R2. The weak binding of Ca(2+) to R1 and R2 does result in a change to the degree of ionization of the micelles and especially for mixed R1/R2 micelles at R1-rich solution compositions. The stronger binding of Ca(2+) to LAS results in the addition of Ca(2+) having a much greater impact on the self-assembly of R1/LAS and R2/LAS mixtures. For R1/LAS mixtures the addition of Ca(2+) promotes the formation of more planar structures, even at low surfactant concentrations where in the absence of Ca(2+) mixed globular micelle formation dominates. In R2/LAS mixtures, where there is a greater contrast between the high and low preferred curvatures associated with R2 and LAS, the addition of Ca(2+) results in a more complex evolution in micellar aggregation and the degree of ionization of the micelles. This results in variations in Ca(2+) binding that promotes micellar structures in which a spatial segregation of the two surfactant components within the micelle occurs.


Assuntos
Benzenossulfonatos/química , Cálcio/química , Glicolipídeos/química , Ramnose/química , Tensoativos/química , Adsorção , Ar , Cátions Bivalentes , Concentração de Íons de Hidrogênio , Micelas , Conformação Molecular , Soluções , Tensão Superficial , Água
13.
J Chem Phys ; 137(20): 204909, 2012 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-23206033

RESUMO

Binary mixtures of colloidal particles of sufficiently different sizes or shapes tend to demix at high concentration. Already at low concentration, excluded volume interactions between the two species give rise to structuring effects. Here, a new theoretical description is proposed of the structure of colloidal sphere-plate mixtures, based on a density expansion of the work needed to insert a pair of spheres and a single sphere in a sea of them, in the presence or not of plates. The theory is first validated using computer simulations. The predictions are then compared to experimental observations using silica spheres and gibbsite platelets. Small-angle neutron scattering was used to determine the change of the structure factor of spheres on addition of platelets, under solvent contrast conditions where the platelets were invisible. Theory and experiment agreed very well for a platelet/sphere diameter ratio D∕d = 2.2 and reasonably well for D∕d = 5. The sphere structure factor increases at low scattering vector Q in the presence of platelets; a weak reduction of the sphere structure factor was predicted at larger Q, and for the system with D∕d = 2.2 was indeed observed experimentally. At fixed particle volume fraction, an increase in diameter ratio leads to a large change in structure factor. Systems with a larger diameter ratio also phase separate at lower concentrations.

14.
Phys Rev E Stat Nonlin Soft Matter Phys ; 86(6 Pt 1): 061407, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23367950

RESUMO

Despite their lack of thermodynamical stability, nanoemulsions can show a remarkable degree of kinetic stability. Among the various different preparation methods the phase-inversion concentration method is particularly interesting as it occurs spontaneously. Here we investigate such a system composed of a surfactant, cosurfactant, and oil that upon dilution with water forms long time metastable oil-in-water nanoemulsion droplets. The dynamics of the amphiphilic monolayers and its elastic properties is important for their stability and therefore the monolayer dynamics have been investigated by neutron spin echo (NSE). Despite the difficulties arising from the inherently polydisperse nature and the large number of different components necessarily contained in commercial nanoemulsion formulations, information concerning the membrane rigidity was extracted from the combination of small angle neutron scattering and NSE and several different formulations are compared. These results show that small amounts of different admixed ionic surfactants can modify the monolayer rigidity substantially and similarly effects of surface bound polyelectrolytes have been evaluated.

15.
Langmuir ; 27(17): 10514-22, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21774527

RESUMO

The self-assembly of the protein hydrophobin, HFBII, and its self-assembly with cationic, anionic, and nonionic surfactants hexadecylterimethyl ammonium bromide, CTAB, sodium dodecyl sulfate, SDS, and hexaethylene monododecyl ether, C(12)E(6), in aqueous solution have been studied by small-angle neutron scattering, SANS. HFBII self-assembles in solution as small globular aggregates, consistent with the formation of trimers or tetramers. Its self-assembly is not substantially affected by the pH or electrolytes. In the presence of CTAB, SDS, or C(12)E(6), HFBII/surfactant complexes are formed. The structure of the HFBII/surfactant complexes has been identified using contrast variation and is in the form of HFBII molecules bound to the outer surface of globular surfactant micelles. The binding of HFBII decreases the surfactant micelle aggregation number for increasing HFBII concentration in solution, and the number of hydrophobin molecules bound/micelle increases.


Assuntos
Proteínas Fúngicas/química , Tensoativos/química , Adsorção , Micelas , Modelos Moleculares , Difração de Nêutrons , Espalhamento a Baixo Ângulo , Soluções , Propriedades de Superfície , Água/química
16.
Langmuir ; 27(14): 8867-77, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21644533

RESUMO

The self-assembly in aqueous solution of the acidic (AS) and lactonic (LS) forms of the sophorolipid biosurfactant, their mixtures, and their mixtures with anionic surfactant sodium dodecyl benzene sulfonate, LAS, has been studied using predominantly small-angle neutron scattering, SANS, at relatively low surfactant concentrations of <30 mM. The more hydrophobic lactonic sophorolipid forms small unilamellar vesicles at low surfactant concentrations, in the concentration range of 0.2 to 3 mM, and transforms via a larger unilamellar vesicle structure at 7 mM to a disordered dilute phase of tubules at higher concentrations, 10 to 30 mM. In marked contrast, the acidic sophorolipid is predominantly in the form of small globular micelles in the concentration range of 0.5 to 30 mM, with a lower concentration of larger, more planar aggregates (lamellar or vesicular) in coexistence. In mixtures of AS and LS, over the same concentration range, the micellar structure associated with the AS sophorolipid dominates the mixed-phase behavior. In mixtures of anionic surfactant LAS with the AS sophorolipid, the globular micellar structure dominates over the entire composition and concentration range studied. In contrast, mixtures of LAS with the LS sophorolipid exhibit a rich evolution in phase behavior with solution composition and concentration. At low surfactant concentrations, the small unilamellar vesicle structure present for LS-rich solution compositions evolves into a globular micelle structure as the solution becomes richer in LAS. At higher surfactant concentrations, the disordered lamellar structure present for LS-rich compositions transforms to small vesicle/lamellar coexistence, to lamellar/micellar coexistence, to micellar/lamellar coexistence, and ultimately to a pure micellar phase as the solution becomes richer in LAS. The AS sophorolipid surfactant exhibits self-assembly properties similar to those of most other weakly ionic or nonionic surfactants that have relatively large headgroups. However, the more hydrophobic nature of the lactonic sophorolipid results in a more complex and unusual evolution in phase behavior with concentration and with concentration and composition when mixed with anionic surfactant LAS.


Assuntos
Benzenossulfonatos/química , Glicolipídeos/química , Tensoativos/química , Acetilação , Soluções , Tensão Superficial
17.
Langmuir ; 27(12): 7453-63, 2011 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-21595448

RESUMO

We present the phase diagram and the microstructure of the binary surfactant mixture of AOT and C(12)E(4) in D(2)O as characterized by surface tension and small angle neutron scattering. The micellar region is considerably extended in composition and concentration compared to that observed for the pure surfactant systems, and two types of aggregates are formed. Spherical micelles are present for AOT-rich composition, whereas cylindrical micelles with a mean length between 80 and 300 Å are present in the nonionic-rich region. The size of the micelles depends on both concentration and molar ratio of the surfactant mixtures. At higher concentration, a swollen lamellar phase is formed, where electrostatic repulsions dominate over the Helfrich interaction in the mixed bilayers. At intermediate concentrations, a mixed micellar/lamellar phase exists.

18.
Langmuir ; 27(11): 6674-82, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21545121

RESUMO

In this paper, the role of the different structural isomers of the anionic surfactant sodium para-dodecyl benzene sulfonate, LAS, on surface adsorption and solution self-assembly has been studied. Using a combination of neutron reflectivity, NR, and small angle neutron scattering, SANS, the effect of mixing an isomer with a short symmetric hydrocarbon chain with one which has an asymmetric hydrocarbon chain on both the equilibrium surface adsorption behavior and the solution microstructure of the mixtures, both in the presence and absence of a divalent cation (Ca(2+)), has been investigated. In the absence of electrolyte, the LAS isomer mixtures form small charged globular micelles throughout the composition range studied. The micelle aggregation number increases with the increase in the asymmetric isomer content, reflecting an increase in the packing efficiency within the micelle. The addition of calcium ions promotes the formation of planar aggregates, as multilamellar vesicles, but only when the symmetric LAS isomer is the major component of the mixture. At a surfactant concentration just above the critical micelle concentration, CMC, and in the absence of electrolyte, the variation in the surface composition is close to the solution composition. Regular solution theory, RST, calculations show that this variation is also close to what is expected for ideal mixing. The addition of Ca(2+) ions induces a different surface behavior, resulting in the formation of multilayer structures at the interface throughout the entire composition range.


Assuntos
Benzeno/química , Cátions Bivalentes/química , Adsorção , Isomerismo , Soluções , Propriedades de Superfície
19.
J Phys Condens Matter ; 23(19): 194109, 2011 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-21525556

RESUMO

In addition to containing spherical pigment particles, coatings usually contain plate-like clay particles. It is thought that these improve the opacity of the paint film by providing an efficient spacing of the pigment particles. This observation is counterintuitive, as suspensions of particles of different shapes and sizes tend to phase separate on increase of concentration. In order to clarify this matter a model colloidal system is studied here, with a sphere-plate diameter ratio similar to that found in paints. For dilute suspensions, small angle neutron scattering revealed that the addition of plates leads to enhanced density fluctuations of the spheres, in agreement with new theoretical predictions. On increasing the total colloid concentration the plates and spheres phase separate due to the disparity in their shape. This is in agreement with previous theoretical and experimental work on colloidal sphere-plate mixtures, where one particle acts as a depleting agent. The fact that no large scale phase separation is observed in coatings is ascribed to dynamic arrest in intimately mixed, or possibly micro-phase separated structures, at elevated concentration.


Assuntos
Coloides/química , Nanoestruturas/química , Difração de Nêutrons/métodos , Microscopia Eletrônica de Transmissão/métodos , Tamanho da Partícula , Espalhamento a Baixo Ângulo
20.
Biomacromolecules ; 12(4): 859-70, 2011 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-21381699

RESUMO

We study by small-angle neutron scattering (SANS) the structure of hyaluronan -lysozyme complexes. Hyaluronan (HA) is a polysaccharide of 9 nm intrinsic persistence length that bears one negative charge per disaccharide monomer (M(mol) = 401.3 g/mol); two molecular weights, M(w) = 6000 and 500,000 Da were used. The pH was adjusted at 4.7 and 7.4 so that lysozyme has a global charge of +10 and +8, respectively. The lysozyme concentration was varied from 3 to 40 g/L at constant HA concentration (10 g/L). At low protein concentration, samples are monophasic, and SANS experiments reveal only fluctuations of concentration, although, at high protein concentration, clusters are observed by SANS in the dense phase of the diphasic samples. In between, close to the onset of the phase separation, a distinct original scattering is observed. It is characteristic of a rod-like shape, which could characterize "single" complexes involving one or a few polymer chains. For the large molecular weight (500,000), the rodlike rigid domains extend to much larger length scale than the persistence length of the HA chain alone in solution and the range of the SANS investigation. They can be described as a necklace of proteins attached along a backbone of diameter of one or a few HA chains. For the short chains (M(w) ≈ 6000), the rod length of the complexes is close to the chain contour length (∼ 15 nm).


Assuntos
Eletrólitos/química , Ácido Hialurônico/química , Muramidase/química , Peso Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...