Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742946

RESUMO

Research on plant-nanomaterial interactions has greatly advanced over the past decade. One particularly fascinating discovery encompasses the immunomodulatory effects in plants. Due to the low doses needed and the comparatively low toxicity of many nanomaterials, nanoenabled immunomodulation is environmentally and economically promising for agriculture. It may reduce environmental costs associated with excessive use of chemical pesticides and fertilizers, which can lead to soil and water pollution. Furthermore, nanoenabled strategies can enhance plant resilience against various biotic and abiotic stresses, contributing to the sustainability of agricultural ecosystems and the reduction of crop losses due to environmental factors. While nanoparticle immunomodulatory effects are relatively well-known in animals, they are still to be understood in plants. Here, we provide our perspective on the general components of the plant's immune system, including the signaling pathways, networks, and molecules of relevance for plant nanomodulation. We discuss the recent scientific progress in nanoenabled immunomodulation and nanopriming and lay out key avenues to use plant immunomodulation for agriculture. Reactive oxygen species (ROS), the mitogen-activated protein kinase (MAPK) cascade, and the calcium-dependent protein kinase (CDPK or CPK) pathway are of particular interest due to their interconnected function and significance in the response to biotic and abiotic stress. Additionally, we underscore that understanding the plant hormone salicylic acid is vital for nanoenabled applications to induce systemic acquired resistance. It is suggested that a multidisciplinary approach, incorporating environmental impact assessments and focusing on scalability, can expedite the realization of enhanced crop yields through nanotechnology while fostering a healthier environment.

2.
J Mater Chem B ; 12(10): 2471-2480, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38345783

RESUMO

Lignocellulosic biomass represents an abundant and eco-friendly material widely explored in recent years. The main lignocellulosic fractions include cellulose, hemicellulose, and lignin. Nonetheless, the heterogeneity and complexity of these components pose challenges in achieving the desired properties. Conversely, their attractive functional groups can covalently link with other biomolecules, facilitating the creation and enhancement of material properties. Lignocellulosic molecules can form different linkages with other biomolecules through classic and modern methods. Bioconjugation has emerged as a suitable alternative to create new nuances, empowering the linkage between lignocellulosic materials and biomolecules through linkers. These conjugates (lignocellulosic-linkers-biomolecules) attract attention from stakeholders in medicine, chemistry, biology, and agriculture. The plural formations of these biocomplexes highlight the significance of these arrangements. Therefore, this review provides an overview of the progress of lignocellulosic-biomolecule complexes and discusses different types of covalent bioconjugated systems, considering the formation of linkers, applicability, toxicity, and future challenges.


Assuntos
Celulose , Lignina , Lignina/química , Biomassa
3.
NanoImpact ; 31: 100472, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37453617

RESUMO

For safe and effective nutrient management, the cutting-edge approaches to plant fertilization are continuously developed. The aim of the study was to analyze the transcriptional response of barley suffering from Cu deficiency to foliar application of nanoparticulate Cu (nano-Cu) and its ionic form (CuSO4) at 100 and 1000 mg L-1 for the examination of their supplementing effect. The initial interactions of Cu-compounds with barley leaves were analyzed with spectroscopic (ICP-OES) and microscopic (SEM-EDS) methods. To determine Cu cellular status, the impact of Cu-compounds on the expression of genes involved in regulating Cu homeostasis (PAA1, PAA2, RAN1, COPT5), aquaporins (NIP2.1, PIP1.1, TIP1.1, TIP1.2) and antioxidant defense response (SOD CuZn, SOD Fe, SOD Mn, CAT) after 1 and 7 days of exposure was analyzed. Although Cu accumulation in plant leaves was detected overtime, the Cu content in leaves exposed to nano-Cu for 7 days was 44.5% lower than in CuSO4 at 100 mg L-1. However, nano-Cu aggregates remaining on the leaf surface indicated a potential difference between measured Cu content and the real Cu pool present in the plant. Our study revealed significant changes in the pattern of gene expression overtime depending on Cu-compound type and dose. Despite the initial puzzling patterns of gene expression, after 7 days all Cu transporters showed significant down-regulation under Cu-compounds exposure to prevent Cu excess in plant cells. Conversely, aquaporin gene expression was induced after 7 days, especially by nano-Cu and CuSO4 at 100 mg L-1 due to the stimulatory effect of low Cu doses. Our study revealed that the gradual release of Cu ions from nano-Cu at a lower rate provided a milder molecular response than CuSO4. It might indicate that nano-Cu maintained better metal balance in plants than the conventional compounds, thus may be considered as a long-term supplier of Cu.


Assuntos
Hordeum , Hordeum/genética , Antioxidantes/metabolismo , Homeostase , Superóxido Dismutase/genética
4.
ACS Nano ; 17(8): 7417-7430, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36877273

RESUMO

In the present study we evaluate the effect of superparamagnetic iron oxide nanoparticles (SPIONs) carrying usnic acid (UA) as chemical cargo on the soil microbial community in a dystrophic red latosol (oxysol). Herein, 500 ppm UA or SPIONs-framework carrying UA were diluted in sterile ultrapure deionized water and applied by hand sprayer on the top of the soil. The experiment was conducted in a growth chamber at 25 °C, with a relative humidity of 80% and a 16 h/8 h light-dark cycle (600 lx light intensity) for 30 days. Sterile ultrapure deionized water was used as the negative control; uncapped and oleic acid (OA) capped SPIONs were also tested to assess their potential effects. Magnetic nanostructures were synthesized by a coprecipitation method and characterized by scanning and transmission electron microscopy (SEM and TEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), zeta potential, hydrodynamic diameter, magnetic measurements, and release kinetics of chemical cargo. Uncapped and OA-capped SPIONs did not significantly affect soil microbial community. Our results showed an impairment in the soil microbial community exposed to free UA, leading to a general decrease in negative effects on soil-based parameters when bioactive was loaded into the nanoscale magnetic carrier. Besides, compared to control, the free UA caused a significant decrease in microbial biomass C (39%), on the activity of acid protease (59%), and acid phosphatase (23%) enzymes, respectively. Free UA also reduced eukaryotic 18S rRNA gene abundance, suggesting a major impact on fungi. Our findings indicate that SPIONs as bioherbicide nanocarriers can reduce the negative impacts on soil. Therefore, nanoenabled biocides may improve agricultural productivity, which is important for food security due to the need of increasing food production.


Assuntos
Nanopartículas de Magnetita , Nanopartículas de Magnetita/química , Solo , Nanopartículas Magnéticas de Óxido de Ferro , Água
5.
Chemosphere ; 305: 135165, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35667508

RESUMO

Although, silicon - the second most abundant element in the earth crust could not supersede carbon (C) in the competition of being the building block of life during evolution, yet its presence has been reported in some life forms. In case of the plants, silicon has been reported widely to promote the plant growth under normal as well as stressful situations. Nanoform of silicon is now being explored for its potential to improve plant productivity and its tolerance against various stresses. Silicon nanoparticles (SiNPs) in the form of nanofertilizers, nanoherbicides, nanopesticides, nanosensors and targeted delivery systems, find great utilization in the field of agriculture. However, the mechanisms underlying their uptake by plants need to be deciphered in detail. Silicon nanoformss are reported to enhance plant growth, majorly by improving photosynthesis rate, elevating nutrient uptake and mitigating reactive oxygen species (ROS)-induced oxidative stress. Various studies have reported their ability to provide tolerance against a range of stresses by upregulating plant defense responses. Moreover, they are proclaimed not to have any detrimental impacts on environment yet. This review includes the up-to-date information in context of the eminent role of silicon nanoforms in crop improvement and stress management, supplemented with suggestions for future research in this field.


Assuntos
Desenvolvimento Vegetal , Silício , Agricultura , Estresse Oxidativo , Plantas , Silício/farmacologia , Estresse Fisiológico
6.
Environ Pollut ; 300: 118887, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35077838

RESUMO

Aggrandized technological and industrial progression in past decades have occasioned immense depreciation in the quality of environment and ecosystem, majorly due to augmentation in the number of obnoxious pollutants incessantly being released in soil, water or air. Arsenic (As) is one such hazardous metalloid contaminating the environment which has the potential to detrimentally affect the life on earth. Even in minute quantity, As is known to cause various critical diseases in humans and toxicity in plants. Recent studies on nanoparticles (NPs) approve of their ability to qualify the criterion of becoming a potent tool for mitigating As-induced phytotoxicity. Nanoparticles are reported to promote plant growth under As-stress by stimulating various alterations at physiological, biochemical, and molecular levels. In this review, we provide an up-to-date compilation of research that has been carried out in comprehending the mechanisms utilized by nanoparticles including controlled As uptake and distribution in plants, maintenance of ROS homeostasis during stress and chelation and vacuolar sequestration of As so as to reduce the severity of toxicity induced by As, and potential areas of research in this field will also be indicated for future perspectives.


Assuntos
Intoxicação por Arsênico , Arsênio , Nanopartículas , Poluentes do Solo , Arsênio/análise , Ecossistema , Humanos , Nanopartículas/toxicidade , Substâncias Protetoras , Poluentes do Solo/análise
7.
Sci Total Environ ; 805: 150348, 2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-34818759

RESUMO

A new highly sensitive, selective, and inexpensive electrochemical method has been developed for simultaneously detecting diethylstilbestrol (DES) and 17ß-estradiol (E2) in environmental samples (groundwater and lake water) using a graphite sensor modified by cerium oxide nanoparticles (CPE-CeO2 NPs). The developed sensor and the materials used in its preparation were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and X-ray diffraction (XRD). The ab initio simulation was used to evaluate the adsorption energies between both DES and E2 with the surface of the sensor. The peak current of oxidation of both hormones showed two regions of linearity. The region of greatest sensitivity was observed for the linear range of 10 nM-100 nM. The detection and quantification limits for this concentration range were 0.8/2.6 nM and 1.3/4.3 nM for DES and E2, respectively. The analytical performance of the developed method showed high sensitivity, precision, repeatability, reproducibility, and selectivity. The CPE-CeO2 NPs sensor was successfully applied to simultaneously detect DES and E2 in real samples with recovery levels above 98%.


Assuntos
Dietilestilbestrol , Técnicas Eletroquímicas , Eletrodos , Estradiol , Limite de Detecção , Reprodutibilidade dos Testes
8.
J Agric Food Chem ; 69(42): 12527-12540, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34657419

RESUMO

The rapid development of nanotechnology influences the developments within the agro-sector. An example is provided by the production of nanoenabled pesticides with the intention to optimize the efficiency of the pesticides. At the same time, it is important to collect information on the unintended and unwanted adverse effects of emerging nanopesticides on nontarget plants. Currently, this information is limited. In the present study, we compared the effects of a nanoformulation of atrazine (NPATZ) and the nonencapsulated atrazine formulation (ATZ) on physiological responses, defense mechanisms, and nutrient displacement in lettuce over time with the applied concentrations ranging from 0.3 to 3 mg atrazine per kg soil. Our results revealed that both NPATZ and ATZ induced significant decreases in plant biomass, chlorophyll content, and protein content. Additionally, exposure to NPATZ and ATZ caused oxidative stress to the lettuce plant and significantly elevated the activities of the tested ROS scavenger enzymes in plant tissues. These results indicate that NPATZ and ATZ cause distinct adverse impacts on lettuce plants. When comparing the adverse effects in plants after exposure to NPATZ and ATZ, no obvious differences in plant biomass and chlorophyll content were observed between NPATZ and ATZ treatments at the same exposure concentration regardless of exposure duration. An enhanced efficiency of the active ingredient of the nanopesticide as compared to the conventional formulation was observed after long-term exposure to the high concentration of NPATZ, as it induced higher impacts on plants in terms of the end points of the contents of protein, superoxide anion (O2̇-), and MDA, and the activities of stress-related enzymes as compared to the same concentration of ATZ. Furthermore, exposure to both NPATZ and ATZ disrupted the uptake of mineral nutrients in plants, and the differences in the displacement of nutrients between the NPATZ and ATZ treatments depended on the element type, plant organ, exposure concentration, and time. Overall, the application dose of a nanopesticide should balance their increased herbicidal efficiency with the long-term adverse effects in order to maximize the desired impact while minimizing adverse impacts; only then will we be able to understand the potential impact of nanopesticides on the environment.


Assuntos
Atrazina , Herbicidas , Atrazina/farmacologia , Atrazina/toxicidade , Mecanismos de Defesa , Herbicidas/farmacologia , Herbicidas/toxicidade , Lactuca , Nutrientes
9.
Nanoscale ; 13(10): 5410-5418, 2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33666640

RESUMO

Loading active ingredients on nanocarrier systems is becoming a common strategy for improving pesticide formulations. One of the most important properties of these nanoformulations is the proportion of pesticide associated with the nanocarriers (encapsulation efficiency, EE). EE is often determined by centrifugal ultrafiltration. However, the losses of active ingredient in the centrifugal ultrafiltration devices are typically not assessed, potentially leading to erroneous results. In this work, the losses of three pesticides (tebuconazole, terbuthylazine and chlorpyrifos) during centrifugal ultrafiltration have been systematically evaluated for nine different devices. Results suggest that centrifugal ultrafiltration is not suitable for determining the EE of compounds such as chlorpyrifos as 100% losses were observed on all the devices tested. Losses of tebuconazole and terbuthylazine were highly variable according to the type of membrane and the lowest losses were observed in the devices with hydrophilic regenerated cellulose membranes. Based on these results, we propose a correction factor and demonstrate its application to calculate the EE of two nanoformulations based on poly(ε-caprolactone) nanocarriers. The approach extends the applicability of centrifugal ultrafiltration to a wider range of pesticide nanoformulations. We also discuss the effect of dilution on EE and make recommendations to improve the characterisation of nanoparticles-based pesticide nanoformulations in the future.

10.
J Nanobiotechnology ; 19(1): 30, 2021 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-33482828

RESUMO

BACKGROUND: The advances in products based on nanotechnology have directed extensive research on low-cost, biologically compatible, and easily degradable materials. MAIN BODY: Sericin (SER) is a protein mainly composed of glycine, serine, aspartic acid, and threonine amino acids removed from the silkworm cocoon (particularly Bombyx mori and other species). SER is a biocompatible material with economic viability, which can be easily functionalized due to its potential crosslink reactions. Also, SER has inherent biological properties, which makes possible its use as a component of pharmaceutical formulations with several biomedical applications, such as anti-tumor, antimicrobials, antioxidants and as scaffolds for tissue repair as well as participating in molecular mechanisms attributed to the regulation of transcription factors, reduction of inflammatory signaling molecules, stimulation of apoptosis, migration, and proliferation of mesenchymal cells. CONCLUSION: In this review, the recent innovations on SER-based nano-medicines (nanoparticles, micelles, films, hydrogels, and their hybrid systems) and their contributions for non-conventional therapies are discussed considering different molecular mechanisms for promoting their therapeutic applications.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/uso terapêutico , Nanoestruturas/química , Sericinas/química , Sericinas/uso terapêutico , Animais , Materiais Biocompatíveis/isolamento & purificação , Materiais Biocompatíveis/farmacologia , Bombyx/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina/métodos , Nanotecnologia/métodos , Sericinas/isolamento & purificação , Sericinas/farmacologia , Alicerces Teciduais/química
11.
J Hazard Mater ; 404(Pt A): 124148, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33059255

RESUMO

Recent years have seen the development of various colloidal formulations of pesticides and other agrochemicals aimed at use in sustainable agriculture. These formulations include inorganic, organic or hybrid particulates, or nanocarriers composed of biodegradable polymers, that can provide a better control of the release of active ingredients. The very small particle sizes and high surface areas of nanopesticides may however also lead to some unintended (eco)toxicological effects due to the way in which they interact with the target and non-target species and the environment. The current level of knowledge on ecotoxicological effects of nanopesticides is scarce, especially in regard to the fate and behaviour of such formulations in the environment. Nanopesticides will however have to cross a stringent regulatory scrutiny before marketing in most countries for health and environmental risks under a range of regulatory frameworks that require pre-market notification, risk assessment and approval, followed by labelling, post-market monitoring and surveillance. This review provides an overview of the key regulatory and ecotoxicological aspects relating to nanopesticides that will need to be considered for environmentally-sustainable use in agriculture.


Assuntos
Praguicidas , Agricultura , Agroquímicos/toxicidade , Ecotoxicologia , Praguicidas/análise , Praguicidas/toxicidade , Polímeros
12.
J Hazard Mater ; 403: 123840, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33264921

RESUMO

The integration of nanotechnology for efficient pest management is gaining momentum to overcome the challenges and drawbacks of traditional approaches. However, studies pertaining to termite pest control using biosynthesized nanoparticles are seldom. The present study aims to highlight the following key points: a) green synthesis of AgNPs using Glochidion eriocarpum and their activity against wood-feeding termites, b) testing the hypothesis that AgNPs diminish digestive enzymes in termite gut through in silico analysis. The green synthesis route generated spherical PsAgNPs in the size range of 4-44.5 nm exhibiting higher thermal stability with minimal weight loss at 700 °C. The choice and no-choice bioassays confirmed strong repellent (80.97%) and antifeedant activity of PsAgNPs. Moreover, PsAgNPs exposure caused visible morphological changes in termites. Molecular docking simulation indicated possible attenuation of endoglucanase and bacteria-origin xylanase, digestive enzymes from termite gut, through partial blocking of the catalytic site by AgNPs. Altogether, our preliminary study suggests promising potentials of PsAgNPs for pest management in forestry and agriculture sectors to prevent damages to living trees, wood, crops, etc. As sustainable pest management practices demand low risk to the environment and biodiversity therefore, we recommend that more extensive studies should be performed to elucidate the environmental compatibility of PsAgNPs.


Assuntos
Isópteros , Animais , Bactérias , Simulação de Acoplamento Molecular , Árvores , Madeira
13.
J Agric Food Chem ; 68(40): 11105-11113, 2020 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-32915575

RESUMO

The use of nano- and microparticles as a release system for agrochemicals has been increasing in agricultural sector. However, the production of eco-friendly and smart carriers that can be easily handled in the environment is still a challenge for this technology. In this context, we have developed a biodegradable release system for the herbicide atrazine with magnetic properties. Herein, we investigated the (a) physicochemical properties of the atrazine-loaded magnetic poly(ε-caprolactone) microparticles (MPs:ATZ), (b) in vitro release kinetic profile of the herbicide, and (c) phytotoxicity toward photosynthesis in the aquatic fern Azolla caroliniana. The encapsulation efficiency of the herbicide in the MPs:ATZ was ca. 69%, yielding spherical microparticles with a diameter of ca. 100 µm, a sustained-release profile, and easily manipulated with an external magnetic field. Also, phytotoxicity issues showed that the MPs:ATZ maintained their herbicidal activity via inhibition of PSII, showing lower toxicity compared with the nonencapsulated ATZ at 0.01 and 0.02 µmol·L-1. Therefore, this technology may conveniently promote a novel magnetic controlled release of the herbicide ATZ (with the potential to be collected from a watercourse) and act as a nutrient boost to the nontarget plant, with good herbicidal activity and reduced risk to the environment.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Herbicidas/química , Magnetismo/métodos , Complexo de Proteína do Fotossistema II/antagonistas & inibidores , Poliésteres/química , Atrazina/química , Sistemas de Liberação de Medicamentos/instrumentação , Liberação Controlada de Fármacos , Gleiquênias/efeitos dos fármacos , Gleiquênias/metabolismo , Herbicidas/farmacologia , Magnetismo/instrumentação , Nanopartículas/química , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Poliésteres/farmacologia
14.
Chemosphere ; 259: 127417, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32623201

RESUMO

Glyphosate (Gly) is the most widely used herbicide in the world and has broad-spectrum and non-selective activity. Its indiscriminate use hence risks contamination of water bodies and can affect living organisms, especially sensitive or resistant non-target plants. Despite this, studies on physiological mechanisms and Gly remediation in Neotropical aquatic plants remain limited. This study aims to evaluate the physiological mechanisms of the aquatic macrophyte Salvinia biloba on exposure to different concentrations of a Gly commercial formulation (Gly-CF) and a Gly analytical standard (Gly-AS). Furthermore, using square-wave voltammetry (SWV), we determined whether the studied plant could remove Gly from water. Our data suggest that Gly-AS and Gly-CF induce similar physiological responses in S. biloba. However, Gly-CF was more phytotoxic. Depending on the concentration, the two forms of Gly affected the plants, decreasing the chlorophyll a and b contents and the photosystem II (PSII) photochemical activity. The data also revealed that Gly promoted oxidative stress and increased the shikimic acid concentration. At the same time, the plants removed Gly from water, with 100% removal for 1 mg L-1 Gly and above 60% removal for the other concentrations studied. Therefore, our results suggest that S. biloba may be a potential phytoremediation agent for low Gly concentrations, since 1 mg L-1 Gly was completely removed and exhibited low phytotoxicity. This study deepens our scientific understanding of the Gly impact on and the phytoremediation potential of S. biloba.


Assuntos
Biodegradação Ambiental , Glicina/análogos & derivados , Herbicidas/toxicidade , Traqueófitas/fisiologia , Clorofila A , Glicina/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Complexo de Proteína do Fotossistema II , Poluentes Químicos da Água/análise , Glifosato
15.
J Hazard Mater ; 396: 122484, 2020 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-32302886

RESUMO

This work has assessed the impact of copper oxide nanoparticles (CuONPs), designed via green route, toward photosynthetic apparatus on aquatic photoautotrophic organisms. In order to filling knowledge gaps, in vitro and in vivo assays were performed, using cyanobacterial phycocyanin (C-PC) from Arthrospira platensis and Lemna valdiviana plants (duckweed), respectively. Impairment in light energy transfer became evident in C-PC exposed to CuONPs, giving rise to an increase of light absorption and a suppression of fluorescence emission. Fourier transform infrared spectroscopy (FTIR) results showed that C-PC structures might be altered by the nanoparticles, also revealed that CuONPs preferably interacts with -NH functional groups. The data also revealed that CuONPs affected the chlorophyll a content in duckweed leaves. In addition, photosystem II (PSII) performance was significantly affected by CuONPs, negatively impacting the PSII photochemical network. In summary, the results point out that, even eco-friendly designed, CuONPs may negatively affect the photosynthetic process when accumulated by aquatic photoautotrophs.


Assuntos
Cobre , Nanopartículas , Spirulina , Clorofila A , Cobre/toxicidade , Nanopartículas/toxicidade
16.
Nanotoxicology ; 14(3): 310-325, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31775550

RESUMO

We systematically investigated how the combinations of size, shape and the natural organic matter (NOM)-ecocorona of gold (Au) engineered nanoparticles (ENPs) influence the attachment of the particles to algae and physical toxicity to the cells. Spherical (10, 60 and 100 nm), urchin-shaped (60 nm), rod-shaped (10 × 45, 40 × 60 and 50 × 100 nm), and wire-shaped (75 × 500, 75 × 3000 and 75 × 6000 nm) citrate-coated and NOM-coated Au-ENPs were used. Among the spherical particles only the spherical 10 nm Au-ENPs caused membrane damage to algae. Only the rod-shaped 10 × 45 nm induced membrane damage among the rod-shaped Au-ENPs. Wire-shaped Au-ENPs caused no membrane damage to the algae. NOM ecocorona decreased the membrane damage effects of spherical 10 nm and rod-shaped 10 × 45 nm ENPs. The spherical Au-ENPs were mostly loosely attached to the cells compared to other shapes, whereas the wire-shaped Au-ENPs were mostly strongly attached compared to particles with other shapes. NOM ecocorona determined the strength of Au-ENPs attachment to the cell wall, leading to the formation of loose rather than strong attachment of Au-ENPs to the cells. After removal of the loosely and strongly attached Au-ENPs, some particles remained anchored to the surface of the algae. The highest concentration was detected for spherical 10 nm Au-ENPs followed by rod-shaped 10 × 45 nm Au-ENPs, while the lowest concentration was observed for the wire-shaped Au-ENPs. The combined effect of shape, size, and ecocorona controls the Au-ENPs attachment and physical toxicity to cells.


Assuntos
Ouro , Substâncias Húmicas/análise , Nanopartículas Metálicas , Microalgas/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , Membrana Celular/ultraestrutura , Ecotoxicologia , Ouro/química , Ouro/toxicidade , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Microalgas/crescimento & desenvolvimento , Microscopia Confocal , Tamanho da Partícula , Propriedades de Superfície
17.
Ecotoxicol Environ Saf ; 180: 526-534, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31128550

RESUMO

With the continued increase of technological uses of cerium oxide nanoparticles (CeO2 NPs or nanoceria) and their unregulated disposal, the accumulation of nanoceria in the environment is inevitable. Concomitantly, atmospheric carbon dioxide (CO2) levels continue to rise, increasing the concentrations of bicarbonate ions in aquatic ecosystems. This study investigates the influence of CeO2 NPs (from 0 to 100 µgL-1) in the presence and absence of an elevated bicarbonate (HCO3-) ion concentration (1 mM), on vibrational biochemical parameters and photosystem II (PSII) activity in leaf discs of Salvinia auriculata. Fourier transform-infrared photoacoustic spectroscopy (FTIR-PAS) was capable of diagnostic use to understand biochemical and metabolic changes in leaves submitted to the CeO2 NPs and also detected interactive responses between CeO2 NPs and HCO3- exposure at the tissue level. The results showed that the higher CeO2 NPs levels in the presence of HCO3- increased the non-photochemical quenching (NPQ) and coefficient of photochemical quenching in dark (qPd) compared to the absence of HCO3. Moreover, the presence of HCO3- significantly decreased the NPQ at all levels of CeO2 NPs demonstrating that HCO3- exposure may change the non-radiative process involved in the operation of the photosynthetic apparatus. Overall, the results of this study are useful for providing baseline information on the interactive effects of CeO2 NPs and elevated HCO3- ion concentration on photosynthetic systems.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Dióxido de Carbono/análise , Cério/toxicidade , Clorofila A/metabolismo , Gleiquênias/efeitos dos fármacos , Nanopartículas/toxicidade , Poluentes Químicos da Água/toxicidade , Organismos Aquáticos/metabolismo , Bicarbonatos/análise , Gleiquênias/metabolismo , Fluorometria , Fotossíntese/efeitos dos fármacos , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier
18.
Colloids Surf B Biointerfaces ; 174: 56-62, 2019 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-30439638

RESUMO

In recent years, the development of hybrid drug delivery systems, such as hydrogels and nanoparticles, has gained considerable attention as new formulations for skin-delivery. Meanwhile, transdermal diffusion synthetic membranes have been used to assess skin permeability to these systems, providing key insights into the relationships between drug and nanoformulations. In this study, benzocaine-loaded poly-ε-caprolactone nanoparticles (BZC:NPs) were synthesized, characterized and incorporated into Poloxamer 407-based hydrogel (PL407). Benzocaine (BZC) was used as a drug model since has been commonly applied as a topical pain reliever in the last years. Hence, we developed a hybrid polymeric nanoparticle/thermosensitive hydrogels system and evaluated the in vitro permeation of the BZC, as well as nanoformulation tracking in an artificial membrane. In vitro permeation study was conducted in a vertical diffusion cell system using a Strat-M® membrane model. BZC:NPs were prepared by coprecipitation method and their physicochemical stability measured before incorporating into the thermosensitive hydrogel. Also, viscosity measurements and sol-gel transition temperature were performed by rheological analysis. Different techniques, including microscopy, were used to tracking the nanoparticles on both receptor medium and synthetic membranes. Results showed high BZC encapsulation efficiency into NPs (93%) and good physicochemical stability before and after hydrogel incorporation. BZC in vitro permeation kinetics from NPs-loaded Poloxamer 407-based hydrogel presented slower permeation profile compared with the BZC: Poloxamer 407-based hydrogel. Also, NPs were observed into the diffusion cells receptor compartment after the in vitro permeation study. These results contribute to a better understanding the interaction between hydrogels, nanoparticles and synthetic membrane, as well as open perspectives for the development of new drug delivery systems for skin.


Assuntos
Benzocaína/administração & dosagem , Caproatos/administração & dosagem , Sistemas de Liberação de Medicamentos , Hidrogéis/administração & dosagem , Lactonas/administração & dosagem , Membranas Artificiais , Nanopartículas/administração & dosagem , Polímeros/administração & dosagem , Pele/metabolismo , Animais , Benzocaína/química , Caproatos/química , Permeabilidade da Membrana Celular , Composição de Medicamentos , Humanos , Hidrogéis/química , Lactonas/química , Nanopartículas/química , Polímeros/química , Temperatura
19.
J Nanobiotechnology ; 16(1): 71, 2018 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-30231877

RESUMO

Nanomedicine and nano delivery systems are a relatively new but rapidly developing science where materials in the nanoscale range are employed to serve as means of diagnostic tools or to deliver therapeutic agents to specific targeted sites in a controlled manner. Nanotechnology offers multiple benefits in treating chronic human diseases by site-specific, and target-oriented delivery of precise medicines. Recently, there are a number of outstanding applications of the nanomedicine (chemotherapeutic agents, biological agents, immunotherapeutic agents etc.) in the treatment of various diseases. The current review, presents an updated summary of recent advances in the field of nanomedicines and nano based drug delivery systems through comprehensive scrutiny of the discovery and application of nanomaterials in improving both the efficacy of novel and old drugs (e.g., natural products) and selective diagnosis through disease marker molecules. The opportunities and challenges of nanomedicines in drug delivery from synthetic/natural sources to their clinical applications are also discussed. In addition, we have included information regarding the trends and perspectives in nanomedicine area.


Assuntos
Portadores de Fármacos/química , Sistemas de Liberação de Medicamentos/métodos , Nanomedicina/métodos , Nanoestruturas/química , Animais , Produtos Biológicos/administração & dosagem , Descoberta de Drogas/métodos , Humanos , Nanotecnologia/métodos , Preparações Farmacêuticas/administração & dosagem
20.
Sci Rep ; 8(1): 12397, 2018 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-30120279

RESUMO

Silver nanoparticles (AgNPs) are known mainly because of their bactericidal properties. Among the different types of synthesis, there is the biogenic synthesis, which allows the synergy between the nanocomposites and substances from the organism employed for the synthesis. This study describes the synthesis of AgNPs using infusion of roots (AgNpR) and extract (AgNpE) of the plant Althaea officinalis. After the synthesis through reduction of silver nitrate with compounds of A. officinalis, physico-chemical analyzes were performed by UV-Vis spectroscopy, nanoparticles tracking analysis (NTA), dynamic light scattering (DLS) and scanning electron microscopy (SEM). Toxicity was evaluated through Allium cepa assay, comet test with cell lines, cell viability by mitochondrial activity and image cytometry and minimal inhibitory concentration on pathogenic microorganisms. Biochemical analyzes (CAT - catalase, GPx - glutathione peroxidase e GST - glutationa S-transferase) and genotoxicity evaluation in vivo on Zebrafish were also performed. AgNpE and AgNpR showed size of 157 ± 11 nm and 293 ± 12 nm, polydispersity of 0.47 ± 0.08 and 0.25 ± 0.01, and zeta potential of 20.4 ± 1.4 and 26.5 ± 1.2 mV, respectively. With regard to toxicity, the AgNpE were the most toxic when compared with AgNpR. Biochemical analyzes on fish showed increase of CAT activity in most of the organs, whereas GPx showed few changes and the activity of GST decreased. Also regarding to bactericidal activity, both nanoparticles were effective, however AgNpR showed greater activity. Althaea officinalis can be employed as reducing agent for the synthesis of silver nanoparticles, although it is necessary to consider its potential toxicity and ecotoxicity.


Assuntos
Althaea/química , Nanopartículas Metálicas , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Substâncias Redutoras/química , Substâncias Redutoras/farmacologia , Prata , Animais , Anti-Infecciosos , Apoptose/efeitos dos fármacos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Fenômenos Químicos , Dano ao DNA/efeitos dos fármacos , Humanos , Nanopartículas Metálicas/química , Camundongos , Testes de Sensibilidade Microbiana , Extratos Vegetais/toxicidade , Substâncias Redutoras/toxicidade , Prata/química , Toxicologia/métodos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...