Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 12(19)2023 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-37830578

RESUMO

Fragile X-associated tremor/ataxia syndrome (FXTAS) is a late-onset neurodegenerative disorder that appears in adult FMR1 premutation carriers. The neuropathological hallmark of FXTAS is an intranuclear inclusion in neurons and astrocytes. Nearly 200 different proteins have been identified in FXTAS inclusions, being the small ubiquitin-related modifier 2 (SUMO2), ubiquitin and p62 the most highly abundant. These proteins are components of the protein degradation machinery. This study aimed to characterize SUMO2/3 expression levels and autophagy process in human postmortem brain samples and skin fibroblast cultures from FXTAS patients. Results revealed that FXTAS postmortem brain samples are positive for SUMO2/3 conjugates and supported the idea that SUMO2/3 accumulation is involved in inclusion formation. Insights from RNA-sequencing data indicated that SUMOylation processes are significantly upregulated in FXTAS samples. In addition, the analysis of the autophagy flux showed the accumulation of p62 protein levels and autophagosomes in skin fibroblasts from FXTAS patients. Similarly, gene set analysis evidenced a significant downregulation in gene ontology terms related to autophagy in FXTAS samples. Overall, this study provides new evidence supporting the role of SUMOylation and autophagic processes in the pathogenic mechanisms underlying FXTAS.


Assuntos
Síndrome do Cromossomo X Frágil , Tremor , Adulto , Humanos , Tremor/genética , Tremor/metabolismo , Tremor/patologia , Ubiquitina/metabolismo , Proteína do X Frágil da Deficiência Intelectual/genética , Síndrome do Cromossomo X Frágil/patologia , Ataxia/patologia , Autofagia , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo
2.
Biol Sex Differ ; 14(1): 20, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072826

RESUMO

BACKGROUND: As the housekeeping genes (HKG) generally involved in maintaining essential cell functions are typically assumed to exhibit constant expression levels across cell types, they are commonly employed as internal controls in gene expression studies. Nevertheless, HKG may vary gene expression profile according to different variables introducing systematic errors into experimental results. Sex bias can indeed affect expression display, however, up to date, sex has not been typically considered as a biological variable. METHODS: In this study, we evaluate the expression profiles of six classical housekeeping genes (four metabolic: GAPDH, HPRT, PPIA, and UBC, and two ribosomal: 18S and RPL19) to determine expression stability in adipose tissues (AT) of Homo sapiens and Mus musculus and check sex bias and their overall suitability as internal controls. We also assess the expression stability of all genes included in distinct whole-transcriptome microarrays available from the Gene Expression Omnibus database to identify sex-unbiased housekeeping genes (suHKG) suitable for use as internal controls. We perform a novel computational strategy based on meta-analysis techniques to identify any sexual dimorphisms in mRNA expression stability in AT and to properly validate potential candidates. RESULTS: Just above half of the considered studies informed properly about the sex of the human samples, however, not enough female mouse samples were found to be included in this analysis. We found differences in the HKG expression stability in humans between female and male samples, with females presenting greater instability. We propose a suHKG signature including experimentally validated classical HKG like PPIA and RPL19 and novel potential markers for human AT and discarding others like the extensively used 18S gene due to a sex-based variability display in adipose tissue. Orthologs have also been assayed and proposed for mouse WAT suHKG signature. All results generated during this study are readily available by accessing an open web resource ( https://bioinfo.cipf.es/metafun-HKG ) for consultation and reuse in further studies. CONCLUSIONS: This sex-based research proves that certain classical housekeeping genes fail to function adequately as controls when analyzing human adipose tissue considering sex as a variable. We confirm RPL19 and PPIA suitability as sex-unbiased human and mouse housekeeping genes derived from sex-specific expression profiles, and propose new ones such as RPS8 and UBB.


Housekeeping genes (HKG) are involved in the maintenance of essential cellular functions. They usually present constant expression levels and are relevant because of their usefulness as internal controls in gene expression studies. However, HKG can vary the gene expression profile depending on different variables such as sex, introducing errors in the experimental results. In this study, we have performed an exhaustive systematic review and applied a massive analysis of expression data to check which HKG presents this bias and which do not. The results confirm that certain classical HKG do not perform adequately as controls when analyzing human adipose tissue considering sex as a variable. We further confirm the suitability of RPL19 and PPIA as human and mouse HKG without sex bias derived from sex-specific expression profiles, and propose new ones such as RPS8 and UBB. These results will be of great use in upcoming studies where expression data need to be normalized without the inclusion of sex bias.


Assuntos
Genes Essenciais , Transcriptoma , Masculino , Feminino , Humanos , Animais , Camundongos , Sexismo , Perfilação da Expressão Gênica/métodos , Análise em Microsséries
3.
Biol Sex Differ ; 13(1): 68, 2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36414996

RESUMO

BACKGROUND: In recent decades, increasing longevity (among other factors) has fostered a rise in Parkinson's disease incidence. Although not exhaustively studied in this devastating disease, the impact of sex represents a critical variable in Parkinson's disease as epidemiological and clinical features differ between males and females. METHODS: To study sex bias in Parkinson's disease, we conducted a systematic review to select sex-labeled transcriptomic data from three relevant brain tissues: the frontal cortex, the striatum, and the substantia nigra. We performed differential expression analysis on each study chosen. Then we summarized the individual differential expression results with three tissue-specific meta-analyses and a global all-tissues meta-analysis. Finally, results from the meta-analysis were functionally characterized using different functional profiling approaches. RESULTS: The tissue-specific meta-analyses linked Parkinson's disease to the enhanced expression of MED31 in the female frontal cortex and the dysregulation of 237 genes in the substantia nigra. The global meta-analysis detected 15 genes with sex-differential patterns in Parkinson's disease, which participate in mitochondrial function, oxidative stress, neuronal degeneration, and cell death. Furthermore, functional analyses identified pathways, protein-protein interaction networks, and transcription factors that differed by sex. While male patients exhibited changes in oxidative stress based on metal ions, inflammation, and angiogenesis, female patients exhibited dysfunctions in mitochondrial and lysosomal activity, antigen processing and presentation functions, and glutamic and purine metabolism. All results generated during this study are readily available by accessing an open web resource ( http://bioinfo.cipf.es/metafun-pd/ ) for consultation and reuse in further studies. CONCLUSIONS: Our in silico approach has highlighted sex-based differential mechanisms in typical Parkinson Disease hallmarks (inflammation, mitochondrial dysfunction, and oxidative stress). Additionally, we have identified specific genes and transcription factors for male and female Parkinson Disease patients that represent potential candidates as biomarkers to diagnosis.


Assuntos
Doença de Parkinson , Humanos , Masculino , Feminino , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Transcriptoma , Substância Negra/metabolismo , Inflamação/metabolismo , Fatores de Transcrição/metabolismo , Complexo Mediador/genética , Complexo Mediador/metabolismo
4.
Cell Mol Life Sci ; 79(8): 455, 2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-35904607

RESUMO

Neural progenitor cell (NPC) transplantation represents a promising treatment strategy for spinal cord injury (SCI); however, the underlying therapeutic mechanisms remain incompletely understood. We demonstrate that severe spinal contusion in adult rats causes transcriptional dysregulation, which persists from early subacute to chronic stages of SCI and affects nearly 20,000 genes in total tissue extracts. Functional analysis of this dysregulated transcriptome reveals the significant downregulation of cAMP signalling components immediately after SCI, involving genes such as EPAC2 (exchange protein directly activated by cAMP), PKA, BDNF, and CAMKK2. The ectopic transplantation of spinal cord-derived NPCs at acute or subacute stages of SCI induces a significant transcriptional impact in spinal tissue, as evidenced by the normalized expression of a large proportion of SCI-affected genes. The transcriptional modulation pattern driven by NPC transplantation includes the rescued expression of cAMP signalling genes, including EPAC2. We also explore how the sustained in vivo inhibition of EPAC2 downstream signalling via the intrathecal administration of ESI-05 for 1 week impacts therapeutic mechanisms involved in the NPC-mediated treatment of SCI. NPC transplantation in SCI rats in the presence and absence of ESI-05 administration prompts increased rostral cAMP levels; however, NPC and ESI-05 treated animals exhibit a significant reduction in EPAC2 mRNA levels compared to animals receiving only NPCs treatment. Compared with transplanted animals, NPCs + ESI-05 treatment increases the scar area (as shown by GFAP staining), polarizes microglia into an inflammatory phenotype, and increases the magnitude of the gap between NeuN + cells across the lesion. Overall, our results indicate that the NPC-associated therapeutic mechanisms in the context of SCI involve the cAMP pathway, which reduces inflammation and provides a more neuropermissive environment through an EPAC2-dependent mechanism.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Microglia/metabolismo , Células-Tronco Neurais/metabolismo , Neuroproteção , Ratos , Traumatismos da Medula Espinal/patologia , Transplante de Células-Tronco/métodos
5.
Cell Death Differ ; 29(12): 2362-2380, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35681014

RESUMO

Activation of oval cells (OCs) has been related to hepatocyte injury during chronic liver diseases including non-alcoholic fatty liver disease (NAFLD). However, OCs plasticity can be affected under pathological environments. We previously found protection against hepatocyte cell death by inhibiting protein tyrosine phosphatase 1B (PTP1B). Herein, we investigated the molecular and cellular processes involved in the lipotoxic susceptibility in OCs expressing or not PTP1B. Palmitic acid (PA) induced apoptotic cell death in wild-type (Ptpn1+/+) OCs in parallel to oxidative stress and impaired autophagy. This lipotoxic effect was attenuated in OCs lacking Ptpn1 that showed upregulated antioxidant defences, increased unfolded protein response (UPR) signaling, higher endoplasmic reticulum (ER) content and elevated stearoyl CoA desaturase (Scd1) expression and activity. These effects in Ptpn1-/- OCs concurred with an active autophagy, higher mitochondrial efficiency and a molecular signature of starvation, favoring lipid droplet (LD) formation and dynamics. Autophagy blockade in Ptpn1-/- OCs reduced Scd1 expression, mitochondrial fitness, LD formation and restored lipoapoptosis, an effect also recapitulated by Scd1 silencing. PTP1B immunostaining was detected in OCs from mouse liver and, importantly, LDs were found in OCs from Ptpn1-/- mice with NAFLD. In conclusion, we demonstrated that Ptpn1 deficiency restrains lipoapoptosis in OCs through a metabolic rewiring towards a "starvation-like" fate, favoring autophagy, mitochondrial fitness and LD formation. Dynamic LD-lysosomal interations likely ensure lipid recycling and, overall, these adaptations protect against lipotoxicity. The identification of LDs in OCs from Ptpn1-/- mice with NAFLD opens therapeutic perspectives to ensure OC viability and plasticity under lipotoxic liver damage.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Proteína Tirosina Fosfatase não Receptora Tipo 1 , Animais , Camundongos , Hepatócitos/metabolismo , Gotículas Lipídicas/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Ácido Palmítico/farmacologia , Proteína Tirosina Fosfatase não Receptora Tipo 1/genética , Proteína Tirosina Fosfatase não Receptora Tipo 1/metabolismo , Estearoil-CoA Dessaturase/genética , Estearoil-CoA Dessaturase/metabolismo , Deleção de Genes
6.
Antioxidants (Basel) ; 11(6)2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35740026

RESUMO

The objective of this study is to describe the alterations occurring during the neurodegenerative process in skin fibroblast cultures from C9orf72 patients. We characterized the oxidative stress, autophagy flux, small ubiquitin-related protein SUMO2/3 levels as well as the mitochondrial function in skin fibroblast cultures from C9orf72 patients. All metabolic and bioenergetic findings were further correlated with gene expression data obtained from RNA sequencing analysis. Fibroblasts from C9orf72 patients showed a 30% reduced expression of C9orf72, ~3-fold increased levels of oxidative stress and impaired mitochondrial function obtained by measuring the enzymatic activities of mitochondrial respiratory chain complexes, specifically of complex III activity. Furthermore, the results also reveal that C9orf72 patients showed an accumulation of p62 protein levels, suggesting the alteration of the autophagy process, and significantly higher protein levels of SUMO2/3 (p = 0.03). Our results provide new data reinforcing that C9orf72 cells suffer from elevated oxidative damage to biomolecules and organelles and from increased protein loads, leading to insufficient autophagy and an increase in SUMOylation processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...