Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioprocess Biosyst Eng ; 43(10): 1823-1832, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32588115

RESUMO

A priority of the industrial applications of microalgae is the reduction of production costs while maximizing algae biomass productivity. The purpose of this study was to carry out a comprehensive evaluation of the effects of pH control on the production of Nannochloropsis gaditana in tubular photobioreactors under external conditions while considering the environmental, biological, and operational parameters of the process. Experiments were carried out in 3.0 m3 tubular photobioreactors under outdoor conditions. The pH values evaluated were 6.0, 7.0, 8.0, 9.0, and 10.0, which were controlled by injecting pure CO2 on-demand. The results have shown that the ideal pH for microalgal growth was 8.0, with higher values of biomass productivity (Pb) (0.16 g L-1 d-1), and CO2 use efficiency ([Formula: see text]) (74.6% w w-1); [Formula: see text]/biomass value obtained at this pH (2.42 [Formula: see text] gbiomass-1) was close to the theoretical value, indicating an adequate CO2 supply. At this pH, the system was more stable and required a lower number of CO2 injections than the other treatments. At pH 6.0, there was a decrease in the Pb and [Formula: see text]; cultures at pH 10.0 exhibited a lower Pb and photosynthetic efficiency as well. These results imply that controlling the pH at an optimum value allows higher CO2 conversions in biomass to be achieved and contributes to the reduction in costs of the microalgae production process.


Assuntos
Biomassa , Microalgas/crescimento & desenvolvimento , Fotobiorreatores , Estramenópilas/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio
2.
Biotechnol Adv ; 25(2): 176-94, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17208406

RESUMO

Dinoflagellates are microalgae that are associated with the production of many marine toxins. These toxins poison fish, other wildlife and humans. Dinoflagellate-associated human poisonings include paralytic shellfish poisoning, diarrhetic shellfish poisoning, neurotoxic shellfish poisoning, and ciguatera fish poisoning. Dinoflagellate toxins and bioactives are of increasing interest because of their commercial impact, influence on safety of seafood, and potential medical and other applications. This review discusses biotechnological methods of identifying toxic dinoflagellates and detecting their toxins. Potential applications of the toxins are discussed. A lack of sufficient quantities of toxins for investigational purposes remains a significant limitation. Producing quantities of dinoflagellate bioactives requires an ability to mass culture them. Considerations relating to bioreactor culture of generally fragile and slow-growing dinoflagellates are discussed. Production and processing of dinoflagellates to extract bioactives, require attention to biosafety considerations as outlined in this review.


Assuntos
Biotecnologia/métodos , Dinoflagellida , Análise de Alimentos/métodos , Toxinas Marinhas/análise , Animais , Reatores Biológicos , Biotecnologia/instrumentação , Ciguatera/diagnóstico , Diarreia/induzido quimicamente , Dinoflagellida/classificação , Dinoflagellida/metabolismo , Dinoflagellida/fisiologia , Análise de Alimentos/normas , Doenças Transmitidas por Alimentos/diagnóstico , Humanos , Toxinas Marinhas/toxicidade , Paralisia/induzido quimicamente , Padrões de Referência
3.
J Biotechnol ; 123(3): 329-42, 2006 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-16406158

RESUMO

The present paper makes a comparative analysis of the outdoor culture of H. pluvialis in a tubular photobioreactor and a bubble column. Both reactors had the same volume and were operated in the same way, thus allowing the influence of the reactor design to be analyzed. Due to the large changes in cell morphology and biochemical composition of H. pluvialis during outdoor culture, a new, faster methodology has been developed for their evaluation. Characterisation of the cultures is carried out on a macroscopic scale using a colorimetric method that allows the simultaneous determination of biomass concentration, and the chlorophyll, carotenoid and astaxanthin content of the biomass. On the microscopic scale, a method was developed based on the computer analysis of digital microscopic images. This method allows the quantification of cell population, average cell size and population homogeneity. The accuracy of the methods was verified during the operation of outdoor photobioreactors on a pilot plant scale. Data from the reactors showed tubular reactors to be more suitable for the production of H. pluvialis biomass and/or astaxanthin, due to their higher light availability. In the tubular photobioreactor biomass concentrations of 7.0 g/L (d.wt.) were reached after 16 days, with an overall biomass productivity of 0.41 g/L day. In the bubble column photobioreactor, on the other hand, the maximum biomass concentration reached was 1.4 g/L, with an overall biomass productivity of 0.06 g/L day. The maximum daily biomass productivity, 0.55 g/L day, was reached in the tubular photobioreactor for an average irradiance inside the culture of 130 microE/m2s. In addition, the carotenoid content of biomass from tubular photobioreactor increased up to 2.0%d.wt., whereas that of the biomass from the bubble column remained roughly constant at values of 0.5%d.wt. It should be noted that in the tubular photobioreactor under conditions of nitrate saturation, there was an accumulation of carotenoids due to the high irradiance in this reactor, their content in the biomass increasing from 0.5 to 1.0%d.wt. However, carotenoid accumulation mainly took place when nitrate concentration in the medium was below 5.0mM, conditions which were only observed in the tubular photobioreactor. A similar behaviour was observed for astaxanthin, with maximum values of 1.1 and 0.2%d.wt. measured in the tubular and bubble column photobioreactors, respectively. From these data astaxanthin productivities of 4.4 and 0.12 mg/L day were calculated for the tubular and the bubble column photobioreactors. Accumulation of carotenoids was also accompanied by an increase in cell size from 20 to 35 microm, which was only observed in the tubular photobioreactors. Thus it may be concluded that the methodology developed in the present study allows the monitoring of H. pluvialis cultures characterized by fast variations of cell morphology and biochemical composition, especially in outdoor conditions, and that tubular photobioreactors are preferable to bubble columns for the production of biomass and/or astaxanthin.


Assuntos
Reatores Biológicos/microbiologia , Técnicas de Cultura de Células/instrumentação , Clorófitas/citologia , Clorófitas/crescimento & desenvolvimento , Fotobiologia/instrumentação , Biomassa , Proliferação de Células/efeitos da radiação , Tamanho Celular/efeitos da radiação , Sobrevivência Celular/fisiologia , Sobrevivência Celular/efeitos da radiação , Clorófitas/efeitos da radiação , Meio Ambiente , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Fotobiologia/métodos , Projetos Piloto
4.
Bioprocess Biosyst Eng ; 28(4): 243-50, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16247611

RESUMO

The effect of mechanical agitation on the microalgae Phaeodactylum tricornutum and Porphyridium cruentum was investigated in aerated continuous cultures with and without the added shear protectant Pluronic F68. Damage to cells was quantified through a decrease in the steady state concentration of the biomass in the photobioreactor. For a given aeration rate, the steady state biomass concentration rose with increasing rate of mechanical agitation until an upper limit on agitation speed was reached. This maximum tolerable agitation speed depended on the microalgal species. Further increase in agitation speed caused a decline in the steady state concentration of the biomass. An impeller tip speed of >1.56 m s(-1) damaged P. tricornutum in aerated culture. In contrast, the damage threshold tip speed for P. cruentum was between 2.45 and 2.89 m s(-1). Mechanical agitation was not the direct cause of cell damage. Damage occurred because of the rupture of small gas bubbles at the surface of the culture, but mechanical agitation was instrumental in generating the bubbles that ultimately damaged the cells. Pluronic F68 protected the cells against damage and increased the steady state concentration of the biomass relative to operation without the additive. The protective effect of Pluronic was concentration-dependent over the concentration range of 0.01-0.10% w/v.


Assuntos
Reatores Biológicos/microbiologia , Diatomáceas/citologia , Diatomáceas/fisiologia , Estimulação Física/métodos , Poloxâmero/administração & dosagem , Porphyridium/citologia , Porphyridium/fisiologia , Apoptose/efeitos dos fármacos , Apoptose/fisiologia , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Eucariotos/citologia , Eucariotos/fisiologia , Especificidade da Espécie
5.
Biotechnol Bioeng ; 82(1): 62-73, 2003 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-12569625

RESUMO

The production of the microalga Phaeodactylum tricornutum in an outdoor helical reactor was analyzed. First, fluid dynamics, mass-transfer capability, and mixing of the reactor was evaluated at different superficial gas velocities. Performance of the reactor was controlled by power input per culture volume. A maximum liquid velocity of 0.32 m s(-1) and mass transfer coefficient of 0.006 s(-1) were measured at 3200 W m(-3). A model of the influence of superficial gas velocity on the following reactor parameters was proposed: gas hold-up, induced liquid velocity, and mass transfer coefficient, with the accuracy of the model being demonstrated. Second, the influence of superficial gas velocity on the yield of the culture was evaluated in discontinuous and continuous cultures. Mean daily values of culture parameters, including dissolved oxygen, biomass concentration, chlorophyll fluorescence (F(v)/F(m) ratio), growth rate, biomass productivity, and photosynthetic efficiency, were determined. Different growth curves were measured when the superficial gas velocity was modified-the higher the superficial gas velocity, the higher the yield of the system. In continuous mode, biomass productivity increased by 35%, from 1.02 to 1.38 g L(-1) d(-1), when the superficial gas velocity increased from 0.27 to 0.41 m s(-1). Maximal growth rates of 0.068 h(-1), biomass productivities up to 1.4 g L(-1) d(-1), and photosynthetic efficiency of up to 15% were obtained at the higher superficial gas velocity of 0.41 m s(-1). The fluorescence parameter, F(v)/F(m), which reflects the maximal efficiency of PSII photochemistry, showed that the cultures were stressed at average irradiances within the culture higher than 280 microE m(-2) s(-1) at every superficial gas velocity. For nonstressed cultures, the yield of the system was a function of average irradiance inside the culture, with the superficial gas velocity determining this relationship. When superficial gas velocity was increased, higher growth rates, biomass productivities, and photosynthetic efficiencies were obtained for similar average irradiance values. The higher the superficial gas velocity, the higher the liquid velocity, with this increase enhancing the movement of the cells inside the culture. In this way the efficiency of the cells increased and higher biomass concentrations and productivities were reached for the same solar irradiance.


Assuntos
Reatores Biológicos , Diatomáceas/crescimento & desenvolvimento , Modelos Biológicos , Simulação por Computador , Diatomáceas/fisiologia , Desenho de Equipamento , Análise de Falha de Equipamento/métodos , Estudos de Viabilidade , Fotobiologia/instrumentação , Fotobiologia/métodos , Fotossíntese/fisiologia , Projetos Piloto
6.
Biotechnol Bioeng ; 81(4): 459-73, 2003 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-12491531

RESUMO

A dynamic model of photosynthesis is developed, accounting for factors such as photoadaptation, photoinhibition, and the "flashing light effect." The model is shown to explain the reported photosynthesis-irradiance responses observed under various conditions (constant low light, constant intense irradiance, flashing light, diurnal variation in irradiance). As significant distinguishing features, the model assumes: (1) The stored photochemical energy is consumed in an enzyme-mediated process that obeys Michaelis-Menten kinetics; and (2) photoinhibition has a square-root dependence on irradiance. Earlier dynamic models of photosynthesis assumed a first-order dependence of photoinhibition on irradiance and different kinetics of consumption of the stored energy than used in this work. These earlier models could not explain the photosynthesis-irradiance behavior under the full range of irradiance scenarios-a shortcoming that is overcome in the model developed in this work.


Assuntos
Simulação por Computador , Modelos Biológicos , Fotossíntese/fisiologia , Fitoplâncton/fisiologia , Fitoplâncton/efeitos da radiação , Adaptação Biológica/fisiologia , Ritmo Circadiano/fisiologia , Escuridão , Luz , Modelos Químicos , Dinâmica não Linear , Estimulação Luminosa , Fotoperíodo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...