Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ann Bot ; 131(5): 769-787, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36805162

RESUMO

BACKGROUND AND AIMS: Cork oaks (Quercus section Cerris) comprise 15 extant species in Eurasia. Despite being a small clade, they display a range of leaf morphologies comparable to the largest sections (>100 spp.) in Quercus. Their fossil record extends back to the Eocene. Here, we explore how cork oaks achieved their modern ranges and how legacy effects might explain niche evolution in modern species of section Cerris and its sister section Ilex, the holly oaks. METHODS: We inferred a dated phylogeny for cork and holly oaks using a reduced-representation next-generation sequencing method, restriction site-associated DNA sequencing (RAD-seq), and used D-statistics to investigate gene flow hypotheses. We estimated divergence times using a fossilized birth-death model calibrated with 47 fossils. We used Köppen profiles, selected bioclimatic parameters and forest biomes occupied by modern species to infer ancestral climatic and biotic niches. KEY RESULTS: East Asian and Western Eurasian cork oaks diverged initially in the Eocene. Subsequently, four Western Eurasian lineages (subsections) differentiated during the Oligocene and Miocene. Evolution of leaf size, form and texture was correlated, in part, with multiple transitions from ancestral humid temperate climates to mediterranean, arid and continental climates. Distantly related but ecologically similar species converged on similar leaf traits in the process. CONCLUSIONS: Originating in temperate (frost-free) biomes, Eocene to Oligocene ranges of the primarily deciduous cork oaks were restricted to higher latitudes (Siberia to north of Paratethys). Members of the evergreen holly oaks (section Ilex) also originated in temperate biomes but migrated southwards and south-westwards into then-(sub)tropical southern China and south-eastern Tibet during the Eocene, then westwards along existing pre-Himalayan mountain ranges. Divergent biogeographical histories and deep-time phylogenetic legacies (in cold and drought tolerance, nutrient storage and fire resistance) thus account for the modern species mosaic of Western Eurasian oak communities, which are composed of oaks belonging to four sections.


Assuntos
Quercus , Filogenia , Quercus/genética , Ecossistema , Florestas , Sequência de Bases
2.
Plant J ; 109(4): 909-926, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34808015

RESUMO

Standard models of plant speciation assume strictly dichotomous genealogies in which a species, the ancestor, is replaced by two offspring species. The reality in wind-pollinated trees with long evolutionary histories is more complex: species evolve from other species through isolation when genetic drift exceeds gene flow; lineage mixing can give rise to new species (hybrid taxa such as nothospecies and allopolyploids). The multi-copy, potentially multi-locus 5S rDNA is one of few gene regions conserving signal from dichotomous and reticulate evolutionary processes down to the level of intra-genomic recombination. Therefore, it can provide unique insights into the dynamic speciation processes of lineages that diversified tens of millions of years ago. Here, we provide the first high-throughput sequencing (HTS) of the 5S intergenic spacers (5S-IGS) for a lineage of wind-pollinated subtropical to temperate trees, the Fagus crenata - F. sylvatica s.l. lineage, and its distant relative F. japonica. The observed 4963 unique 5S-IGS variants reflect a complex history of hybrid origins, lineage sorting, mixing via secondary gene flow, and intra-genomic competition between two or more paralogous-homoeologous 5S rDNA lineages. We show that modern species are genetic mosaics and represent a striking case of ongoing reticulate evolution during the past 55 million years.


Assuntos
DNA Ribossômico/genética , Evolução Molecular , Fagus/genética , Polinização , Árvores/genética , DNA Intergênico , Fluxo Gênico , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , RNA Ribossômico 5S/genética , Vento
3.
Mol Ecol Resour ; 21(2): 495-510, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32997899

RESUMO

Measuring biological diversity is a crucial but difficult undertaking, as exemplified in oaks where complex patterns of morphological, ecological, biogeographical and genetic differentiation collide with traditional taxonomy, which measures biodiversity in number of species (or higher taxa). In this pilot study, we generated high-throughput sequencing amplicon data of the intergenic spacer of the 5S nuclear ribosomal DNA cistron (5S-IGS) in oaks, using six mock samples that differ in geographical origin, species composition and pool complexity. The potential of the marker for automated genotaxonomy applications was assessed using a reference data set of 1,770 5S-IGS cloned sequences, covering the entire taxonomic breadth and distribution range of western Eurasian Quercus, and applying similarity (blast) and evolutionary approaches (maximum-likelihood trees and Evolutionary Placement Algorithm). Both methods performed equally well, allowing correct identification of species in sections Ilex and Cerris in the pure and mixed samples, and main lineages shared by species of sect. Quercus. Application of different cut-off thresholds revealed that medium- to high-abundance (>10 or 25) sequences suffice for a net species identification of samples containing one or a few individuals. Lower thresholds identify phylogenetic correspondence with all target species in highly mixed samples (analogous to environmental bulk samples) and include rare variants pointing towards reticulation, incomplete lineage sorting, pseudogenic 5S units and in situ (natural) contamination. Our pipeline is highly promising for future assessments of intraspecific and interpopulation diversity, and of the genetic resources of natural ecosystems, which are fundamental to empower fast and solid biodiversity conservation programmes worldwide.


Assuntos
Genoma de Planta , Quercus , Algoritmos , Ecossistema , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Projetos Piloto , Quercus/genética , Análise de Sequência de DNA
4.
PeerJ ; 8: e8999, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32426182

RESUMO

BACKGROUND: Drosanthemum, the only genus of the tribe Drosanthemeae, is widespread over the Greater Cape Floristic Region in southern Africa. With 114 recognized species, Drosanthemum, together with the highly succulent and species-rich tribe Ruschieae, constitute the 'core ruschioids' in Aizoaceae. Within Drosanthemum, nine subgenera have been described based on flower and fruit morphology. Their phylogenetic relationships, however, have not yet been investigated, hampering understanding of monophyletic entities and patterns of geographic distribution. METHODS: Using chloroplast and nuclear DNA sequence data, we performed network- and tree-based phylogenetic analyses of 73 species of Drosanthemum with multiple accessions for widespread species. A well-curated, geo-referenced occurrence dataset comprising the 134 genetically analysed and 863 further accessions was used to describe the distributional ranges of intrageneric lineages and the genus as a whole. RESULTS: Phylogenetic inference supports nine clades within Drosanthemum, seven of which group in two major clades, while the remaining two show ambiguous affinities. The nine clades are generally congruent to previously described subgenera within Drosanthemum, with exceptions such as cryptic species. In-depth analyses of sequence patterns in each gene region were used to reveal phylogenetic affinities inside the retrieved clades in more detail. We observe a complex distribution pattern including widespread, species-rich clades expanding into arid habitats of the interior (subgenera Drosanthemum p.p., Vespertina, Xamera) that are genetically and morphologically diverse. In contrast, less species-rich, genetically less divergent, and morphologically unique lineages are restricted to the central Cape region and more mesic conditions (Decidua, Necopina, Ossicula, Quastea, Quadrata, Speciosa). Our results suggest that the main lineages arose from an initial rapid radiation, with subsequent diversification in some clades.

5.
R Soc Open Sci ; 7(1): 191100, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32218940

RESUMO

The evolution of spoken languages has been studied since the mid-nineteenth century using traditional historical comparative methods and, more recently, computational phylogenetic methods. By contrast, evolutionary processes resulting in the diversity of contemporary sign languages (SLs) have received much less attention, and scholars have been largely unsuccessful in grouping SLs into monophyletic language families using traditional methods. To date, no published studies have attempted to use language data to infer relationships among SLs on a large scale. Here, we report the results of a phylogenetic analysis of 40 contemporary and 36 historical SL manual alphabets coded for morphological similarity. Our results support grouping SLs in the sample into six main European lineages, with three larger groups of Austrian, British and French origin, as well as three smaller groups centring around Russian, Spanish and Swedish. The British and Swedish lineages support current knowledge of relationships among SLs based on extra-linguistic historical sources. With respect to other lineages, our results diverge from current hypotheses by indicating (i) independent evolution of Austrian, French and Spanish from Spanish sources; (ii) an internal Danish subgroup within the Austrian lineage; and (iii) evolution of Russian from Austrian sources.

6.
New Phytol ; 226(4): 1198-1212, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31609470

RESUMO

The tree of life is highly reticulate, with the history of population divergence emerging from populations of gene phylogenies that reflect histories of introgression, lineage sorting and divergence. In this study, we investigate global patterns of oak diversity and test the hypothesis that there are regions of the oak genome that are broadly informative about phylogeny. We utilize fossil data and restriction-site associated DNA sequencing (RAD-seq) for 632 individuals representing nearly 250 Quercus species to infer a time-calibrated phylogeny of the world's oaks. We use a reversible-jump Markov chain Monte Carlo method to reconstruct shifts in lineage diversification rates, accounting for among-clade sampling biases. We then map the > 20 000 RAD-seq loci back to an annotated oak genome and investigate genomic distribution of introgression and phylogenetic support across the phylogeny. Oak lineages have diversified among geographic regions, followed by ecological divergence within regions, in the Americas and Eurasia. Roughly 60% of oak diversity traces back to four clades that experienced increases in net diversification, probably in response to climatic transitions or ecological opportunity. The strong support for the phylogeny contrasts with high genomic heterogeneity in phylogenetic signal and introgression. Oaks are phylogenomic mosaics, and their diversity may in fact depend on the gene flow that shapes the oak genome.


Assuntos
Quercus , Fluxo Gênico , Genômica , Filogenia , Quercus/genética , Análise de Sequência de DNA
7.
Nat Ecol Evol ; 2(12): 1864-1870, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30374173

RESUMO

Reconstruction of palaeobiomes, ancient communities that exhibit a physiognomic and functional structure controlled by their environment, depends on proxies from different disciplines. Based on terrestrial mammal fossils, the late Miocene vegetation from China to the eastern Mediterranean and East Africa has been reconstructed as a single cohesive biome with increasingly arid conditions, with modern African savannahs the surviving remnant. Here, we test this reconstruction using plant fossils spanning 14-4 million years ago from sites in Greece, Bulgaria, Turkey, the Tian Shan Mountains and Baode County in China, and East Africa. The western Eurasian sites had a continuous forest cover of deciduous or evergreen angiosperms and gymnosperms, with 15% of 1,602 fossil occurrences representing conifers, which were present at all but one of the sites. Raup-Crick analyses reveal high floristic similarity between coeval eastern Mediterranean and Chinese sites, and low similarity between Eurasian and African sites. The disagreement between plant-based reconstructions, which imply that late Miocene western Eurasia was covered by evergreen needleleaf forests and mixed forests, and mammal-based reconstructions, which imply a savannah biome, throws into doubt the approach of inferring Miocene precipitation and open savannah habitats solely from mammalian dental traits. Organismal communities are constantly changing in their species composition, and neither animal nor plant traits by themselves are sufficient to infer entire ancient biomes. The plant fossil record, however, unambiguously rejects the existence of a cohesive savannah biome from eastern Asia to northeast Africa.


Assuntos
Ecossistema , Dispersão Vegetal , África Oriental , Animais , China , Fósseis , Pradaria , Mamíferos , Região do Mediterrâneo , Plantas/classificação
8.
PeerJ ; 6: e5793, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356975

RESUMO

Oaks (Quercus) comprise more than 400 species worldwide and centres of diversity for most sections lie in the Americas and East/Southeast Asia. The only exception is the Eurasian sect. Cerris that comprises about 15 species, most of which are confined to western Eurasia. This section has not been comprehensively studied using molecular tools. Here, we assess species diversity and provide a first comprehensive taxonomic and phylogeographic scheme of western Eurasian members of sect. Cerris using plastid (trnH-psbA) and nuclear (5S-IGS) DNA variation with a dense intra-specific and geographic sampling. Chloroplast haplotypes primarily reflected phylogeographic patterns originating from interspecific cytoplasmic gene flow within sect. Cerris and its sister section Ilex. We identified two widespread and ancestral haplotypes, and locally restricted derived variants. Signatures shared with Mediterranean species of sect. Ilex, but not with the East Asian Cerris oaks, suggest that the western Eurasian lineage came into contact with Ilex only after the first (early Oligocene) members of sect. Cerris in Northeast Asia had begun to radiate and move westwards. Nuclear 5S-IGS diversification patterns were more useful for establishing a molecular-taxonomic framework and to reveal hybridization and reticulation. Four main evolutionary lineages were identified. The first lineage is comprised of Q. libani, Q. trojana and Q. afares and appears to be closest to the root of sect. Cerris. These taxa are morphologically most similar to the East Asian species of Cerris, and to both Oligocene and Miocene fossils of East Asia and Miocene fossils of western Eurasia. The second lineage is mainly composed of the widespread Q. cerris and the narrow endemic species Q. castaneifolia, Q. look, and Q. euboica. The third lineage comprises three Near East species (Q. brantii, Q. ithaburensis and Q. macrolepis), well adapted to continental climates with cold winters. The forth lineage appears to be the most derived and comprises Q. suber and Q. crenata. Q. cerris and Q.  trojana displayed high levels of variation; Q. macrolepis and Q. euboica, previously treated as subspecies of Q. ithaburensis and Q. trojana, likely deserve independent species status. A trend towards inter-specific crosses was detected in several taxa; however, we found no clear evidence of a hybrid origin of Q. afares and Q. crenata, as currently assumed.

9.
Grana ; 57(1-2): 16-116, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29386990

RESUMO

Earlier studies indicate a strong correlation of pollen morphology and ultrastructure with taxonomy in Loranthaceae. Using high-resolution light microscopy and scanning electron microscopy imaging of the same pollen grains, we document pollen types of 35 genera including 15 studied for the first time. Using a molecular phylogenetic framework based on currently available sequence data with good genus-coverage, we reconstruct trends in the evolution of Loranthaceae pollen and pinpoint traits of high diagnostic value, partly confirming earlier intuitive hypotheses based on morphological observations. We find that pollen morphology in Loranthaceae is strongly linked to phylogenetic relationships. Some pollen types are diagnostic for discrete genera or evolutionary lineages, opening the avenue to recruit dispersed fossil pollen as age constraints for dated phylogenies and as independent data for testing biogeographic scenarios; so far based exclusively on modern-day data. Correspondences and discrepancies between palynological and molecular data and current taxonomic/systematic concepts are identified and suggestions made for future palynological and molecular investigations of Loranthaceae.

10.
PeerJ ; 5: e3433, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28713650

RESUMO

The Osmundales (Royal Fern order) originated in the late Paleozoic and is the most ancient surviving lineage of leptosporangiate ferns. In contrast to its low diversity today (less than 20 species in six genera), it has the richest fossil record of any extant group of ferns. The structurally preserved trunks and rhizomes alone are referable to more than 100 fossil species that are classified in up to 20 genera, four subfamilies, and two families. This diverse fossil record constitutes an exceptional source of information on the evolutionary history of the group from the Permian to the present. However, inconsistent terminology, varying formats of description, and the general lack of a uniform taxonomic concept renders this wealth of information poorly accessible. To this end, we provide a comprehensive review of the diversity of structural features of osmundalean axes under a standardized, descriptive terminology. A novel morphological character matrix with 45 anatomical characters scored for 15 extant species and for 114 fossil operational units (species or specimens) is analysed using networks in order to establish systematic relationships among fossil and extant Osmundales rooted in axis anatomy. The results lead us to propose an evolutionary classification for fossil Osmundales and a revised, standardized taxonomy for all taxa down to the rank of (sub)genus. We introduce several nomenclatural novelties: (1) a new subfamily Itopsidemoideae (Guaireaceae) is established to contain Itopsidema, Donwelliacaulis, and Tiania; (2) the thamnopteroid genera Zalesskya, Iegosigopteris, and Petcheropteris are all considered synonymous with Thamnopteris; (3) 12 species of Millerocaulis and Ashicaulis are assigned to modern genera (tribe Osmundeae); (4) the hitherto enigmatic Aurealcaulis is identified as an extinct subgenus of Plenasium; and (5) the poorly known Osmundites tuhajkulensis is assigned to Millerocaulis. In addition, we consider Millerocaulis stipabonettiorum a possible member of Palaeosmunda and Millerocaulis estipularis as probably constituting the earliest representative of the (Todea-)Leptopteris lineage (subtribe Todeinae) of modern Osmundoideae.

11.
PeerJ ; 5: e3373, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28607837

RESUMO

BACKGROUND: We revisit the palaeopalynological record of Loranthaceae, using pollen ornamentation to discriminate lineages and to test molecular dating estimates for the diversification of major lineages. METHODS: Fossil Loranthaceae pollen from the Eocene and Oligocene are analysed and documented using scanning-electron microscopy. These fossils were associated with molecular-defined clades and used as minimum age constraints for Bayesian node dating using different topological scenarios. RESULTS: The fossil Loranthaceae pollen document the presence of at least one extant root-parasitic lineage (Nuytsieae) and two currently aerial parasitic lineages (Psittacanthinae and Loranthinae) by the end of the Eocene in the Northern Hemisphere. Phases of increased lineage diversification (late Eocene, middle Miocene) coincide with global warm phases. DISCUSSION: With the generation of molecular data becoming easier and less expensive every day, neontological research should re-focus on conserved morphologies that can be traced through the fossil record. The pollen, representing the male gametophytic generation of plants and often a taxonomic indicator, can be such a tracer. Analogously, palaeontological research should put more effort into diagnosing Cenozoic fossils with the aim of including them into modern systematic frameworks.

12.
PeerJ ; 5: e3434, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28626610

RESUMO

BACKGROUND: The Saururaceae, a very small family of Piperales comprising only six species in four genera, have a relatively scanty fossil record outside of Europe. The phylogenetic relationships of the four genera to each other are resolved, with the type genus Saururus occurring in both eastern North America and East Asia. No extant species occurs in western Eurasia. The most exceptional find so far has been an inflorescence with in-situ pollen, Saururus tuckerae S.Y.Sm. & Stockey from Eocene of North America with strong affinities to extant species of Saururus. Recent dated trees suggest, however, an Eocene or younger crown age for the family. METHODS: Dispersed fossil pollen grains from the Campanian (82-81 Ma) of North America are compared to dispersed pollen grains from the Eocene strata containing S. tuckerae, the Miocene of Europe, and extant members of the family using combined LM and SEM imaging. RESULTS: The unambiguous fossil record of the Saururaceae is pushed back into the Campanian (82-81 Ma). Comparison with re-investigated pollen from the Eocene of North America, the Miocene of Europe, and modern species of the family shows that pollen morphology in Saururaceae is highly conservative, and remained largely unchanged for the last 80 million years. DISCUSSION: Campanian pollen of Saururaceae precludes young (Eocene or younger) estimates for the Saururaceae root and crown age, but is in-line with maximum age scenarios. Saururus-type pollen appear to represent the primitive pollen morphology of the family. Often overlooked because of its small size, dispersed Saururaceae pollen may provide a unique opportunity to map the geographic history of a small but old group of Piperales, and should be searched for in Paleogene and Cretaceous sediment samples.

13.
BMC Evol Biol ; 17(1): 131, 2017 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-28592249

RESUMO

BACKGROUND: The Philippine archipelago is globally one of the most important model island systems for studying evolutionary processes. However, most plant species on this archipelago have not yet been studied in sufficient detail. The main aim of this study is to unravel the evolutionary history and biogeographic relationships of the Philippine members of the pantropical genus Ixora. RESULTS: The complex plastid and nuclear divergence patterns in Philippine Ixora, documented using tree and network approaches, reveal a highly dynamic evolution in Ixora, involving several phases of radiation and recolonization. Philippine Ixora comprises at least five lineages, of which one is most closely related to species from Wallacea, and the remaining four to species from Asia. CONCLUSIONS: Our study highlights the importance of Philippine species for understanding phytogeographic patterns in the Indomalayan-Australasian eco-region. The overall genetic differentiation, as well as the incongruence between genealogies based on the biparentally inherited nucleome and the maternally inherited plastome in Ixora, reflect the complex tectonic history of the Philippine archipelago. The Ixora lineage related to Wallacean species supports the delimitation of different ecozones along Huxley's line, because it is absent from Palawan. The remaining four lineages are all allied with Asian taxa, reflecting several waves of colonization. Close relationships between some widespread Philippine species and locally adapted narrow endemics suggest that the widespread, genetically diverse species act as pools for the formation of new species in a process of ongoing speciation. Our results suggest that the species concepts of some of the more widespread taxa need to be revised.


Assuntos
Rubiaceae/classificação , Rubiaceae/genética , Animais , Evolução Biológica , Cloroplastos/genética , DNA de Plantas/genética , Variação Genética , Filipinas , Filogenia , Rubiaceae/citologia , Análise de Sequência de DNA
14.
Artigo em Inglês | MEDLINE | ID: mdl-27325832

RESUMO

The fossilized birth-death (FBD) model can make use of information contained in multiple fossils representing the same clade, and we here apply this model to infer divergence times in beeches (genus Fagus), using 53 fossils and nuclear sequences for all nine species. We also apply FBD dating to the fern clade Osmundaceae, with about 12 living species and 36 fossils. Fagus nuclear sequences cannot be aligned with those of other Fagaceae, and we therefore use Bayes factors to choose among alternative root positions. The crown group of Fagus is dated to 53 (62-43) Ma; divergence of the sole American species to 44 (51-39) Ma and divergence between Central European F. sylvatica and Eastern Mediterranean F. orientalis to 8.7 (20-1.8) Ma, unexpectedly old. The FBD model can accommodate fossils as sampled ancestors or as extinct or unobserved lineages; however, this makes its raw output, which shows all fossils on short or long branches, problematic to interpret. We use hand-drawn depictions and a bipartition network to illustrate the uncertain placements of fossils. Inferred speciation and extinction rates imply approximately 5× higher evolutionary turnover in Fagus than in Osmundaceae, fitting a hypothesized low turnover in plants adapted to low-nutrient conditions.This article is part of the themed issue 'Dating species divergences using rocks and clocks'.


Assuntos
Fagus/fisiologia , Gleiquênias/fisiologia , Fósseis/anatomia & histologia , Especiação Genética , Filogenia , Evolução Biológica , Evolução Molecular , Modelos Biológicos , Proteínas de Plantas/genética , Análise de Sequência de DNA
15.
PeerJ ; 4: e1897, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27123376

RESUMO

Nucleotide sequences from the plastome are currently the main source for assessing taxonomic and phylogenetic relationships in flowering plants and their historical biogeography at all hierarchical levels. One major exception is the large and economically important genus Quercus (oaks). Whereas differentiation patterns of the nuclear genome are in agreement with morphology and the fossil record, diversity patterns in the plastome are at odds with established taxonomic and phylogenetic relationships. However, the extent and evolutionary implications of this incongruence has yet to be fully uncovered. The DNA sequence divergence of four Euro-Mediterranean Group Ilex oak species (Quercus ilex L., Q. coccifera L., Q. aucheri Jaub. & Spach., Q. alnifolia Poech.) was explored at three chloroplast markers (rbcL, trnK/matK, trnH-psbA). Phylogenetic relationships were reconstructed including worldwide members of additional 55 species representing all Quercus subgeneric groups. Family and order sequence data were harvested from gene banks to better frame the observed divergence in larger taxonomic contexts. We found a strong geographic sorting in the focal group and the genus in general that is entirely decoupled from species boundaries. High plastid divergence in members of Quercus Group Ilex, including haplotypes shared with related, but long isolated oak lineages, point towards multiple geographic origins of this group of oaks. The results suggest that incomplete lineage sorting and repeated phases of asymmetrical introgression among ancestral lineages of Group Ilex and two other main Groups of Eurasian oaks (Cyclobalanopsis and Cerris) caused this complex pattern. Comparison with the current phylogenetic synthesis also suggests an initial high- versus mid-latitude biogeographic split within Quercus. High plastome plasticity of Group Ilex reflects geographic area disruptions, possibly linked with high tectonic activity of past and modern distribution ranges, that did not leave imprints in the nuclear genome of modern species and infrageneric lineages.

16.
BMC Evol Biol ; 15: 126, 2015 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-26123220

RESUMO

BACKGROUND: The classification of royal ferns (Osmundaceae) has long remained controversial. Recent molecular phylogenies indicate that Osmunda is paraphyletic and needs to be separated into Osmundastrum and Osmunda s.str. Here, however, we describe an exquisitely preserved Jurassic Osmunda rhizome (O. pulchella sp. nov.) that combines diagnostic features of both Osmundastrum and Osmunda, calling molecular evidence for paraphyly into question. We assembled a new morphological matrix based on rhizome anatomy, and used network analyses to establish phylogenetic relationships between fossil and extant members of modern Osmundaceae. We re-analysed the original molecular data to evaluate root-placement support. Finally, we integrated morphological and molecular data-sets using the evolutionary placement algorithm. RESULTS: Osmunda pulchella and five additional Jurassic rhizome species show anatomical character suites intermediate between Osmundastrum and Osmunda. Molecular evidence for paraphyly is ambiguous: a previously unrecognized signal from spacer sequences favours an alternative root placement that would resolve Osmunda s.l. as monophyletic. Our evolutionary placement analysis identifies fossil species as probable ancestral members of modern genera and subgenera, which accords with recent evidence from Bayesian dating. CONCLUSIONS: Osmunda pulchella is likely a precursor of the Osmundastrum lineage. The recently proposed root placement in Osmundaceae-based solely on molecular data-stems from possibly misinformative outgroup signals in rbcL and atpA genes. We conclude that the seemingly conflicting evidence from morphological, anatomical, molecular, and palaeontological data can instead be elegantly reconciled under the assumption that Osmunda is indeed monophyletic.


Assuntos
Gleiquênias/classificação , Gleiquênias/genética , Fósseis , Rizoma/anatomia & histologia , Evolução Biológica , Gleiquênias/anatomia & histologia , Filogenia , Suécia
17.
Plant Syst Evol ; 301: 809-832, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25620836

RESUMO

In this paper we document Fagaceae pollen from the Eocene of western Greenland. The pollen record suggests a remarkable diversity of the family in the early Cenozoic of Greenland. Extinct Fagaceae pollen types include Eotrigonobalanus, which extends at least back to the Paleocene, and two ancestral pollen types with affinities to the Eurasian Quercus Group Ilex and the western North American Quercus Group Protobalanus. In addition, modern lineages of Fagaceae are unambiguously represented by pollen of Fagus, Quercus Group Lobatae/Quercus, and three Castaneoideae pollen types. These findings corroborate earlier findings from Axel Heiberg Island that Fagaceae were a dominant element at high latitudes during the early Cenozoic. Comparison with coeval or older mid-latitude records of modern lineages of Fagaceae shows that modern lineages found in western Greenland and Axel Heiberg likely originated at lower latitudes. Further examples comprise (possibly) Acer, Aesculus, Alnus, Ulmus, and others. Thus, before fossils belonging to modern northern temperate lineages will have been recovered from older (early Eocene, Paleocene) strata from high latitudes, Engler's hypothesis of an Arctic origin of the modern temperate woody flora of Eurasia, termed 'Arcto-Tertiary Element', and later modification by R. W. Chaney and H. D. Mai ('Arcto-Tertiary Geoflora') needs to be modified.

18.
Mol Phylogenet Evol ; 82 Pt A: 111-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25462997

RESUMO

The monocot family Aponogetonaceae (Alismatales) consists only of Aponogeton, with 57 species occurring in Africa, Madagascar, India and Sri Lanka, Southeast Asia and Australia. Earlier studies inferred a Madagascan or Australian origin for the genus. Aponogeton-like pollen is documented from the Late Cretaceous of Wyoming, the early mid-Eocene of Canada, and the late mid-Eocene of Greenland. We obtained nuclear and plastid DNA sequences for 42 species and generated a time-calibrated phylogeny, rooted on appropriate outgroups. Statistical biogeographic analyses were carried out with or without the fossils incorporated in the phylogeny. The recent-most common ancestor of living Aponogetonaceae appears to date to the mid-Eocene and to have lived in Madagascar or Africa (but not Australia). Three transoceanic dispersal events from Africa/Madagascar to Asia sometime during the Miocene could explain the observed species relationships. As inferred in earlier studies, an ancient Australian species is sister to all other Aponogetonaceae, while the remaining Australian species stem from an Asian ancestor that arrived about 5million years ago. The family's ancient Northern Hemisphere fossil record and deepest extant divergence between a single Australian species and an Africa/Madagascar clade are statistically well-supported and rank among the most unusual patters in the biogeography of flowering plants.


Assuntos
Alismatales/classificação , DNA de Cloroplastos/genética , Filogenia , África , Alismatales/genética , Austrália , DNA de Plantas/genética , Evolução Molecular , Fósseis , Geografia , Funções Verossimilhança , Madagáscar , Modelos Genéticos , Análise de Sequência de DNA
19.
Syst Biol ; 64(3): 396-405, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25503771

RESUMO

A major concern in molecular clock dating is how to use information from the fossil record to calibrate genetic distances from DNA sequences. Here we apply three Bayesian dating methods that differ in how calibration is achieved-"node dating" (ND) in BEAST, "total evidence" (TE) dating in MrBayes, and the "fossilized birth-death" (FBD) in FDPPDiv-to infer divergence times in the royal ferns. Osmundaceae have 16-17 species in four genera, two mainly in the Northern Hemisphere and two in South Africa and Australasia; they are the sister clade to the remaining leptosporangiate ferns. Their fossil record consists of at least 150 species in ∼17 genera. For ND, we used the five oldest fossils, whereas for TE and FBD dating, which do not require forcing fossils to nodes and thus can use more fossils, we included up to 36 rhizomes and frond compression/impression fossils, which for TE dating were scored for 33 morphological characters. We also subsampled 10%, 25%, and 50% of the 36 fossils to assess model sensitivity. FBD-derived divergence ages were generally greater than those inferred from ND; two of seven TE-derived ages agreed with FBD-obtained ages, the others were much younger or much older than ND or FBD ages. We prefer the FBD-derived ages because they best fit the Osmundales fossil record (including Triassic fossils not used in our study). Under the preferred model, the clade encompassing extant Osmundaceae (and many fossils) dates to the latest Paleozoic to Early Triassic; divergences of the extant species occurred during the Neogene. Under the assumption of constant speciation and extinction rates, the FBD approach yielded speciation and extinction rates that overlapped those obtained from just neontological data. However, FBD estimates of speciation and extinction are sensitive to violations in the assumption of continuous fossil sampling; therefore, these estimates should be treated with caution.


Assuntos
Classificação/métodos , Gleiquênias/classificação , Fósseis , Filogenia , Teorema de Bayes , Calibragem , Extinção Biológica , Especiação Genética , Tempo
20.
Rev Palaeobot Palynol ; 200(100): 161-187, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24926107

RESUMO

The fossil record of Aponogeton (Aponogetonaceae) is scarce and the few reported macrofossil findings are in need of taxonomic revision. Aponogeton pollen is highly diagnostic and when studied with light microscopy (LM) and scanning electron microscopy (SEM) it cannot be confused with any other pollen types. The fossil Aponogeton pollen described here represent the first reliable Cretaceous and Eocene records of this genus worldwide. Today, Aponogeton is confined to the tropics and subtropics of the Old World, but the new fossil records show that during the late Cretaceous and early Cenozoic it was thriving in North America and Greenland. The late Cretaceous pollen record provides important data for future phylogenetic and phylogeographic studies focusing on basal monocots, especially the Alismatales. The Eocene pollen morphotypes from North America and Greenland differ in morphology from each other and also from the older Late Cretaceous North American pollen morphotype, indicating evolutionary trends and diversification within the genus over that time period. The presence of Aponogeton in the fossil record of North America and Greenland calls for a reconsideration of all previous ideas about the biogeographic history of the family.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...