Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 9(12)2018 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-30486446

RESUMO

Microfluidics continues to bring innovation to the life sciences. It stimulates progress by enabling new ways of research in biology, chemistry, and biotechnology. However, when designing a microfluidic device, designers have to conduct many tasks by hand-resulting in labor-intensive processes. In particular, when drawing the design of the device, designers have to handle re-occurring entities. Meander channels are one example, which are frequently used in different platforms but always have to fit the respective application and design rules. This work presents an online tool which is capable of automatically generating user-defined, two-dimensional designs of fluidic meander channels facilitating fluidic hydrodynamic resistances. The tool implements specific design rules as it considers the user's needs and fabrication requirements. The compliance of the meanders generated by the proposed tool is confirmed by fabricating the generated designs and comparing whether the resulting devices indeed realize the desired specification. To this end, two case studies are considered: first, the realization of dedicated fluidic resistances and, second, the realization of dedicated mixing ratios of fluids. The results demonstrate the versatility of the tool regarding application and technology. Overall, the freely accessible tool with its flexibility and simplicity renders manual drawing of meanders obsolete and, hence, allows for a faster, more straightforward design process.

2.
Softw Syst Model ; 17(3): 913-938, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29983696

RESUMO

Feature models are frequently used to capture the knowledge about configurable software systems and product lines. However, feature modeling of large-scale systems is challenging as models are needed for diverse purposes. For instance, feature models can be used to reflect the perspectives of product management, technical solution architecture, or product configuration. Furthermore, models are required at different levels of granularity. Although numerous approaches and tools are available, it remains hard to define the purpose, scope, and granularity of feature models. This paper first reports results and experiences of an exploratory case study on developing feature models for two large-scale industrial automation software systems. We report results on the characteristics and modularity of the feature models, including metrics about model dependencies. Based on the findings from the study, we developed FORCE, a modeling language, and tool environment that extends an existing feature modeling approach to support models for different purposes and at multiple levels, including mappings to the code base. We demonstrate the expressiveness and extensibility of our approach by applying it to the well-known Pick and Place Unit example and an injection molding subsystem of an industrial product line. We further show how our approach supports consistency between different feature models. Our results and experiences show that considering the purpose and level of features is useful for modeling large-scale systems and that modeling dependencies between feature models is essential for developing a system-wide perspective.

3.
RSC Adv ; 8(60): 34733-34742, 2018 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-35548635

RESUMO

The functional performance of passively operated droplet microfluidics is sensitive with respect to the dimensions of the channel network, the fabrication precision as well as the applied pressure because the entire network is coupled together. Especially, the local and global hydrodynamic resistance changes caused by droplets make the task to develop a robust microfluidic design challenging as plenty of interdependencies which all affect the intended behavior have to be considered by the designer. After the design, its functionality is usually validated by fabricating a prototype and testing it with physical experiments. In case that the functionality is not implemented as desired, the designer has to go back, revise the design, and repeat the fabrication as well as experiments. This current design process based on multiple iterations of refining and testing the design produces high costs (financially as well as in terms of time). In this work, we show how a significant amount of those costs can be avoided when applying simulation before fabrication. To this end, we demonstrate how simulations on the 1D circuit analysis model can help in the design process by means of a case study. Therefore, we compare the design process with and without using simulation. As a case study, we use a microfluidic network which is capable of trapping and merging droplets with different content on demand. The case study demonstrates how simulation can help to validate the derived design by considering all local and global hydrodynamic resistance changes. Moreover, the simulations even allow further exploration of different designs which have not been considered before due to the high costs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA