Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cardiovasc Res ; 116(1): 40-50, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696222

RESUMO

Cigarette smoking is the most preventable risk factor related to cardiovascular morbidity and mortality. Tobacco usage has declined in recent years; however, the use of alternative nicotine delivery methods, particularly e-cigarettes, has increased exponentially despite limited data on their short- and long-term safety and efficacy. Due to their unique properties, the impact of e-cigarettes on cardiovascular physiology is not fully known. Here, we summarize both preclinical and clinical data extracted from short- and long-term studies on the cardiovascular effects of e-cigarette use. Current findings support that e-cigarettes are not a harm-free alternative to tobacco smoke. However, the data are primarily derived from acute studies. The impact of chronic e-cigarette exposure is essentially unstudied. To explore the uniqueness of e-cigarettes, we contemplate the cardiovascular effects of individual e-cigarette constituents. Overall, data suggest that exposure to e-cigarettes could be a potential cardiovascular health concern. Further preclinical research and randomized trials are needed to expand basic and clinical investigations before considering e-cigarettes safe alternatives to conventional cigarettes.


Assuntos
Doenças Cardiovasculares/etiologia , Sistema Cardiovascular/efeitos dos fármacos , Vapor do Cigarro Eletrônico/efeitos adversos , Sistemas Eletrônicos de Liberação de Nicotina , Vaping/efeitos adversos , Aldeídos/efeitos adversos , Animais , Doenças Cardiovasculares/diagnóstico , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/fisiopatologia , Qualidade de Produtos para o Consumidor , Aromatizantes/efeitos adversos , Humanos , Metais/efeitos adversos , Nicotina/efeitos adversos , Oxidantes/efeitos adversos , Medição de Risco , Fatores de Risco
2.
Life Sci ; 239: 116885, 2019 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-31655193

RESUMO

BACKGROUND: Studies have demonstrated that exposure to fine particulate matter (PM2.5) is linked to cardiovascular disease (CVD), which is exacerbated in patients with pre-existing conditions such as obesity. In the present study, we examined cardiac function of obese mice exposed to PM2.5 and determined if mild exercise affected cardiac function. METHODS: Obese mice (ob/ob) (leptin deficient, C57BL/6J background) were exposed to either filtered air (FA) or PM2.5 at an average concentration of 32 µg/m3 for 6 h/day, 5 days/week for 9 months. Following exposure, mice were divided into four groups: (1) FA sedentary, (2) FA treadmill exercise, (3) PM2.5 sedentary, and (4) PM2.5 treadmill exercise and all mice were analyzed after 8 weeks of exercise training. RESULTS: Echocardiography showed increased left ventricular end systolic (LVESd) and diastolic (LVEDd) diameters in PM2.5 sedentary mice compared to FA sedentary mice. There was increased expression of ICAM1, VCAM and CRP markers in sedentary PM2.5 mice compared to FA mice. Both FA and PM2.5 exercised mice showed decreased posterior wall thickness in systole compared to FA sedentary mice, coupled with altered expression of inflammatory markers following exercise. CONCLUSION: Obese mice exposed to PM2.5 for 9 months showed cardiac dysfunction, which was not improved following mild exercise training.


Assuntos
Cardiopatias/metabolismo , Obesidade/metabolismo , Material Particulado/efeitos adversos , Poluentes Atmosféricos , Animais , Doenças Cardiovasculares/etiologia , Doenças Cardiovasculares/metabolismo , Cardiopatias/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Miócitos Cardíacos , Tamanho da Partícula , Condicionamento Físico Animal/fisiologia
3.
J Am Heart Assoc ; 7(24): e010797, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30561255

RESUMO

Background Particulate matter (particles < 2.5 µm [ PM 2.5]) exposure during the in utero and postnatal developmental periods causes cardiac dysfunction during adulthood. Here, we investigated the potential priming effects of preconception exposure of PM 2.5 on cardiac function in adult offspring. Methods and Results Male and female friend leukemia virus b (FVB) mice were exposed to either filtered air ( FA ) or PM 2.5 at an average concentration of 38.58 µg/m3 for 6 hours/day, 5 days/week for 3 months. Mice were then crossbred into 2 groups: (1)  FA male× FA female (both parents were exposed to FA preconception) and, (2) PM 2.5male× PM 2.5female (both parents were exposed to PM 2.5 preconception). Male offspring were divided: (1) preconception FA (offspring born to FA exposed parents) and, (2) preconception PM 2.5 (offspring born to PM 2.5 exposed parents) and analyzed at 3 months of age. Echocardiography identified increased left ventricular end systolic volume and reduced posterior wall thickness, reduced %fractional shortening and %ejection fraction in preconception PM 2.5 offspring. Cardiomyocytes isolated from preconception PM 2.5 offspring showed reduced %peak shortening, -dL/dT, TPS 90 and slower calcium reuptake (tau). Gene and protein expression revealed modifications in markers of inflammation ( IL -6, IL -15, TNF α, NF қB, CRP , CD 26E, CD 26P, intercellular adhesion molecule 1, and monocyte chemoattractant protein-1) profibrosis (collagen type III alpha 1 chain), oxidative stress ( NOS 2), antioxidants (Nrf2, SOD , catalase), Ca2+ regulatory proteins ( SERCA 2a, p- PLN , NCX ), and epigenetic regulators (Dnmt1, Dnmt3a, Dnmt3b, Sirt1, and Sirt2) in preconception PM 2.5 offspring. Conclusions Preconception exposure to PM 2.5 results in global cardiac dysfunction in adult offspring, suggesting that abnormalities during development are not limited to the prenatal or postnatal periods but can also be determined before conception.


Assuntos
Exposição por Inalação/efeitos adversos , Exposição Materna/efeitos adversos , Material Particulado/toxicidade , Exposição Paterna/efeitos adversos , Lesões Pré-Concepcionais/induzido quimicamente , Disfunção Ventricular Esquerda/induzido quimicamente , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Epigênese Genética/efeitos dos fármacos , Feminino , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Mediadores da Inflamação/metabolismo , Masculino , Camundongos , Contração Miocárdica/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Tamanho da Partícula , Lesões Pré-Concepcionais/genética , Lesões Pré-Concepcionais/metabolismo , Lesões Pré-Concepcionais/fisiopatologia , Medição de Risco , Fatores de Risco , Fatores Sexuais , Volume Sistólico/efeitos dos fármacos , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/metabolismo , Disfunção Ventricular Esquerda/fisiopatologia , Função Ventricular Esquerda/genética
4.
Curr Opin Physiol ; 1: 198-205, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29552675

RESUMO

PURPOSE: Environmental stressors are disturbing our ecosystem at an accelerating rate. An increasingly relevant stressor are air pollutants, whose levels are increasing worldwide with threats to human health. These air pollutants are associated with increased mortality and morbidity from cardiovascular diseases. In this review we discuss environmental stressors focusing mainly on the various types of air pollutants, their short-term and long-term cardiovascular effects, and providing the epidemiological evidence associated with adverse cardiovascular outcomes. Direct and indirect pathophysiological mechanisms are also linked with cardiovascular complications such as thrombosis, fibrinolysis, hypertension, ischemic heart diseases and arrhythmias. RESULTS: Evidence to date suggests that humans are constantly being exposed to unhealthy levels of environmental toxicants with the potential of serious health conditions. Environmental stressors adversely affect the cardiovascular system and pose an increased risk for cardiovascular diseases for those who reside in highly polluted areas. CONCLUSION: People with existing risk factors and those with established cardiovascular disease have increased susceptibility to environmental stressors. The literature reviewed in this article thus support public health policies aimed at reducing pollutant exposure to benefit public health.

5.
Environ Pollut ; 230: 116-124, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28649039

RESUMO

OBJECTIVE: Exposure of fine particulate matter (PM2.5) to pregnant dams has been shown to be strongly associated with adverse cardiovascular outcomes in offspring at adulthood, however, effects evident during neonatal periods are unclear. We designed this study to examine cardiac function of neonatal mice (14 days old) exposed to in utero PM2.5. METHODS: Pregnant FVB female mice were exposed either to filtered air (FA) or PM2.5 at an average concentration of 91.78 µg/m3 for 6 h/day, 5 days/wk (similar to exposure in a large industrial area) throughout the gestation period (21 days). After birth, animals were analyzed at day 14 of life. RESULTS: Fourteen day old mice exposed to PM2.5 during the in utero period demonstrated decreased fractional shortening (%FS, 41.1 ± 1.2% FA, 33.7 ± 1.2% PM2.5, p < 0.01) and LVEDd (2.87 ± 0.08 mm FA, 2.58 ± 0.07 mm PM2.5, p < 0.05) compared to FA exposed mice. Contractile kinetics and calcium transients in isolated cardiomyocytes from PM2.5 exposed mice illustrated reduced peak shortening (%PS, 16.7 ± 0.5% FA, 14.7 ± 0.4% PM2.5, p < 0.01), negative contractile velocity (-dL/dT, -6.91 ± 0.3 µm/s FA, -5.46 ± 0.2 µm/s PM2.5, p < 0.001), increased time to relaxation 90% (TR90, 0.07 ± 0.003 s FA, 0.08 ± 0.004 s PM2.5, p < 0.05), decreased calcium transient amplitude (Δ340/380, 33.8 ± 3.4 FA, 29.5 ± 2.8 p.m.2.5) and slower fluorescence decay rate (τ, 0.72 ± 0.1 s FA, 1.16 ± 0.15 s PM2.5, p < 0.05). Immunoblotting studies demonstrated alterations in expression of Ca2+ handling proteins- SERCA-2A, p-PLN, NCX and CaV1.2 in hearts of 14 day old in utero PM2.5 exposed mice compared to FA exposed hearts. CONCLUSION: PM2.5 exposure during the critical in utero period adversely affects the developing mouse fetus leading to functional cardiac changes that were evident during the very early (14 days) stages of adolescence. These data demonstrated that exposure to PM2.5 during the gestation period significantly impacts cardiovascular outcomes early in life.


Assuntos
Poluentes Atmosféricos/toxicidade , Coração/efeitos dos fármacos , Exposição Materna/efeitos adversos , Material Particulado/toxicidade , Animais , Cálcio/metabolismo , Feminino , Coração/fisiopatologia , Masculino , Camundongos , Miócitos Cardíacos , Material Particulado/metabolismo , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...