Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans R Soc Lond B Biol Sci ; 379(1898): 20220509, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38310941

RESUMO

In many organisms, rapidly changing environmental conditions are inducing dramatic shifts in diverse phenotypic traits with consequences for fitness and population viability. However, the mechanisms that underlie these responses remain poorly understood. Endocrine signalling systems often influence suites of traits and are sensitive to changes in environmental conditions; they are thus ideal candidates for uncovering both plastic and evolved consequences of climate change. Here, we use body size and shape, a set of integrated traits predicted to shift in response to rising temperatures with effects on fitness, and insulin-like growth factor-1 as a case study to explore these ideas. We review what is known about changes in body size and shape in response to rising temperatures and then illustrate why endocrine signalling systems are likely to be critical in mediating these effects. Lastly, we discuss research approaches that will advance understanding of the processes that underlie rapid responses to climate change and the role endocrine systems will have. Knowledge of the mechanisms involved in phenotypic responses to climate change will be essential for predicting both the ecological and the long-term evolutionary consequences of a warming climate. This article is part of the theme issue 'Endocrine responses to environmental variation: conceptual approaches and recent developments'.


Assuntos
Evolução Biológica , Mudança Climática , Fenótipo , Temperatura , Tamanho Corporal
2.
Gen Comp Endocrinol ; 330: 114163, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356644

RESUMO

In altricial animals, young are completely dependent on parents for provisioning. The ability to outcompete siblings to receive parental provisioning has clear fitness benefits, and may be mediated by hormones that influence growth. We analyzed the effects of insulin-like growth factor 1 (IGF-1) on body size, growth, and sibling rivalry in eastern bluebirds (Sialia sialis). To determine whether IGF-1 is upregulated in response to the competitive environment, we manipulated brood sizes and examined the effect on IGF-1 levels, nestling body size, growth rate, and behavior. In a separate experiment, we injected nestlings with exogenous IGF-1 to study its impacts on body size, growth rate, and sibling competition. Brood size manipulation did not influence endogenous IGF-1 levels, but male nestlings with higher IGF-1 levels early in the nestling period tended to have greater mass gain than males with lower IGF-1 levels. Nestlings with higher IGF-1 levels also tended to be fed more frequently by parents. In the injection experiment, IGF-1 injected individuals tended to be heavier than vehicle injected young by the end of the nestling period, which suggests that IGF-1 can influence mass gain in bluebirds. IGF-1 has been proposed to be a mediator of life-history strategies and post-hatching behavior. Our results suggest that although bluebird nestlings do not adaptively elevate IGF-1 in response to the presence or number of siblings, IGF-1 may influence growth during the nestling period. These findings shed light on sibling competition, life history strategies, and the hormones that underlie them.


Assuntos
Fator de Crescimento Insulin-Like I , Aves Canoras , Masculino , Animais , Humanos , Irmãos , Tamanho Corporal
3.
Horm Behav ; 144: 105227, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35780563

RESUMO

The endocrine system uses information about the environment and the individual's state to regulate circulating concentrations of hormones, and then those hormones, through receptor binding, cause changes in the phenotype. How quickly individuals can up- and down-regulate their hormones can affect baseline and elevated hormone levels and presumably affects how successfully individuals can cope with a varying environment. To respond to environmental change, individuals first need to perceive and process cues about the state of the environment. Individuals may receive imperfect cues about the environment due to perceptual errors, variation in cues, or inexperience with novel stressors. In this paper we use a mathematical model to ask how these imperfect cues should affect how individuals regulate their glucocorticoid concentrations. We find imperfect cues can lead to changes in hormone regulation with individuals generally having higher baseline and lower elevated hormone levels as environmental cues become less reliable. Informational constraints and physiological constraints appear to have generally additive effects, with informational constraints having less of an impact as physiological constraints increase. Our results highlight the different means by which imperfect information can affect hormone regulation. We find that mistakes caused by imperfect cues are commonly responsible for changes in average hormone levels, but imperfect cues also cause individuals to be slower and less certain in their updated estimates of the environmental state, which affects hormone regulation. We also demonstrate the separate effects of false positive and false negative cues and how these are shaped by the relative fitness consequences of baseline and stress-induced hormone levels. Our model shows how given our assumptions imperfect stressor cues should affect endocrine flexibility and regulation, and we hope provides a piece for future conversations and models of endocrine regulation.


Assuntos
Sinais (Psicologia) , Glucocorticoides , Sistema Endócrino , Fenótipo
4.
J Exp Biol ; 225(Suppl_1)2022 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-35258612

RESUMO

There is growing interest in studying hormones beyond single 'snapshot' measurements, as recognition that individual variation in the endocrine response to environmental change may underlie many rapid, coordinated phenotypic changes. Repeated measures of hormone levels in individuals provide additional insight into individual variation in endocrine flexibility - that is, how individuals modulate hormone levels in response to the environment. The ability to quickly and appropriately modify phenotype is predicted to be favored by selection, especially in unpredictable environments. The need for repeated samples from individuals can make empirical studies of endocrine flexibility logistically challenging, but methods based in mathematical modeling can provide insights that circumvent these challenges. Our Review introduces and defines endocrine flexibility, reviews existing studies, makes suggestions for future empirical work, and recommends mathematical modeling approaches to complement empirical work and significantly advance our understanding. Mathematical modeling is not yet widely employed in endocrinology, but can be used to identify innovative areas for future research and generate novel predictions for empirical testing.


Assuntos
Sistema Endócrino , Hormônios , Sistema Endócrino/fisiologia , Fenótipo
5.
Horm Behav ; 136: 105059, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34508875

RESUMO

Unpredictable environmental changes displace individuals from homeostasis and elicit a stress response. In vertebrates, the stress response is mediated mainly by glucocorticoids (GCs) which initiate physiological changes while minimizing allostatic overload. Individuals and species vary consistently in baseline and stress-induced GC levels and the speed with which GC levels can be upregulated or downregulated, but the extent to which variation in hormone regulation influences baseline and stress-induced GC levels is unclear. Using mathematical modeling, we tested how GC regulation rate, frequencies and durations of acute stressors, fitness functions, and allostatic overload affect GC levels during control and acute stress periods. As GC regulation rate slows, baseline and acute stress-induced GC levels become more similar. When the speed of up- and downregulation decreased, hormone levels became more linked to anticipated future conditions to avoid fitness costs of mismatching a new environmental state. More frequent acute stressors caused baseline and acute stress-induced GC levels to converge. When fitness was more tightly linked to hormone levels during acute stress periods than during control states, the speed of upregulation influenced optimal hormone levels more than the downregulation rate. With allostatic overload costs included, predicted GC levels were lower and more dependent on the frequency of past acute stressors. Our results show the value of optimality modeling to study the hormonal response to stressors and suggest GC levels depend on past and anticipated future environmental states as well as individual differences in hormone regulation.


Assuntos
Alostase , Glucocorticoides , Animais , Homeostase , Humanos , Vertebrados/fisiologia
6.
Horm Behav ; 124: 104806, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32534838

RESUMO

Predation threat impacts prey behavior, physiology, and fitness. Stress-mediated alterations to the paternal epigenome can be transmitted to offspring via the germline, conferring a potential advantage to offspring in predator-rich environments. While intergenerational epigenetic transmission of paternal experience has been demonstrated in mammals, how paternal predator exposure might alter offspring phenotypes across development is unstudied. We exposed male mice to a predator odor (2,4,5-trimethylthiazoline, TMT) or a neutral odor (banana extract) prior to mating and measured offspring behavioral phenotypes throughout development, together with adult stress reactivity and candidate gene expression in the prefrontal cortex, hippocampus, amygdala, and hypothalamus. We predicted that offspring of TMT-exposed males would be less active, would display elevated anxiety-like behaviors, and would have a more efficient stress response relative to controls, phenotypes that should enhance predator avoidance in a high predation risk environment. Unexpectedly, we found that offspring of TMT-exposed males are more active, exhibit less anxiety-like behavior, and have decreased baseline plasma corticosterone relative to controls. Effects of paternal treatment on neural gene expression were limited to the prefrontal cortex, with increased mineralocorticoid receptor expression and a trend towards increased Bdnf expression in offspring of TMT-exposed males. These results suggest that fathers exposed to predation threat produce offspring that are buffered against non-acute stressors and, potentially, better adapted to a predator-dense environment because they avoid trade-offs between predator avoidance and foraging and reproduction. This study provides evidence that ecologically relevant paternal experience can be transmitted through the germline, and can impact offspring phenotypes throughout development.


Assuntos
Ansiedade , Encéfalo/metabolismo , Exposição Paterna , Comportamento Predatório/fisiologia , Estresse Fisiológico/genética , Animais , Ansiedade/genética , Ansiedade/metabolismo , Ansiedade/fisiopatologia , Ansiedade/psicologia , Comportamento Animal/fisiologia , Encéfalo/patologia , Corticosterona/sangue , Sinais (Psicologia) , Pai , Feminino , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Exposição Paterna/efeitos adversos , Fenótipo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/genética , Efeitos Tardios da Exposição Pré-Natal/patologia , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Efeitos Tardios da Exposição Pré-Natal/psicologia
7.
R Soc Open Sci ; 6(9): 190732, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31598302

RESUMO

The mammalian placenta is a source of endocrine signals that prime the onset of maternal care at parturition. While consequences of placental dysfunction for offspring growth are well defined, how altered placental signalling might affect maternal behaviour is unstudied in a natural system. In the cross between sympatric mouse species, Mus musculus domesticus and Mus spretus, hybrid placentas are undersized and show misexpression of genes critical to placental endocrine function. Using this cross, we quantified the effects of placental dysregulation on maternal and anxiety-like behaviours in mice that differed only in pregnancy type. Relative to mothers of conspecific litters, females exposed to hybrid placentas did not differ in anxiety-like behaviours but were slower to retrieve 1-day-old pups and spent less time in the nest on the night following parturition. Early deficits in maternal responsiveness were not explained by reduced ultrasonic vocalization production in hybrid pups and there was no effect of pup genotype on measures of maternal behaviour and physiology collected after the first 24 h postpartum. These results suggest that placental dysregulation leads to poor maternal priming, the effect of which is alleviated by continued exposure to pups. This study provides new insight into the placental mediation of mother-offspring interactions.

8.
Am Nat ; 192(5): 593-604, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30332583

RESUMO

Stress exposure during development can impact both the expression of individual traits and associations between traits, but whether stress results in stronger or weaker associations between traits is unclear. In this study, we examined within- and among-trait associations for morphological and physiological traits in zebra finches (Taeniopygia guttata) exposed to corticosterone (CORT) during the nestling and fledging stages as well as in control birds. Birds exposed to CORT exhibited stronger within-trait correlations over time and stronger associations among traits. We found preliminary evidence that birds that died before the median age of death had stronger within- and among-trait correlations independent of treatment, and among CORT-treated birds, smaller birds were more likely to survive beyond the median age than larger birds. These findings suggest that stress hormone exposure in early life can result in reduced developmental flexibility, with potential fitness ramifications, and that these costs may be greater for larger offspring. Furthermore, our results provide experimental evidence for pleiotropic effects of hormones during development through altered patterns of phenotypic correlation.


Assuntos
Corticosterona/farmacologia , Tentilhões/crescimento & desenvolvimento , Tentilhões/fisiologia , Animais , Animais Recém-Nascidos , Bactérias/efeitos dos fármacos , Tamanho Corporal/efeitos dos fármacos , Corticosterona/administração & dosagem , Corticosterona/sangue , Feminino , Tentilhões/imunologia , Lipopolissacarídeos/administração & dosagem , Lipopolissacarídeos/imunologia , Longevidade/efeitos dos fármacos , Masculino , Fenótipo , Estresse Fisiológico , Estresse Psicológico
9.
J Exp Zool A Ecol Integr Physiol ; 327(5): 262-272, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29202116

RESUMO

Developmental conditions may impact the expression of immune traits throughout an individual's life. Early-life challenges may lead to immunological constraints that are mediated by endocrine-immune interactions. In particular, individual differences in the ability to mount immune responses may be programmed by exposure to stressors or glucocorticoid hormones during development. To test this hypothesis, we experimentally elevated levels of the glucocorticoid hormone corticosterone during the nestling and fledgling periods in captive zebra finches (Taeniopygia guttata). We subsequently challenged birds with the antigen lipopolysaccharide (LPS) on days 60 and 100 post-hatch to determine if developmental exposure to elevated corticosterone impacted the later response to LPS. As measures of immune function, we quantified bacteria killing ability, haptoglobin concentrations, and LPS-specific antibody responses at multiple time points. We also measured circulating corticosterone concentrations during the experimental period and on day 60 before and after endotoxin challenge. During the experimental period, corticosterone treatment elevated corticosterone levels. Corticosterone treatment did not induce programming effects on immune function or corticosterone production. Independent of treatment, individuals with higher corticosterone concentrations during the nestling period had lower bacteria killing ability on day 36 and higher baseline corticosterone concentrations on day 60 post-hatch. These results suggest a limited role for corticosterone exposure during early life to mediate immunological constraints later in life. Manipulation of cortisol may be necessary to conclusively determine if developmental glucocorticoid exposure can program immune function in birds. To determine if developmental stress can program the immune response, exposure to environmentally relevant stressors should also be manipulated.


Assuntos
Anti-Inflamatórios/farmacologia , Corticosterona/farmacologia , Tentilhões/crescimento & desenvolvimento , Tentilhões/imunologia , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/sangue , Corticosterona/administração & dosagem , Corticosterona/sangue , Feminino , Tentilhões/sangue , Lipopolissacarídeos/toxicidade , Masculino
10.
Gen Comp Endocrinol ; 246: 51-62, 2017 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-28322761

RESUMO

Hormones can facilitate the expression of behavior, but relatively few studies have considered individual variation and repeatability in hormone-behavior relationships. Repeated measures of hormones are valuable because repeatability in hormone levels might be a mechanism that drives repeatability in behavior ("personality"). Testosterone is predicted to promote territorial aggression and suppress parental behaviors. In our population of eastern bluebirds (Sialia sialis), parental care and nest defense aggression toward a heterospecific are repeatable. We tested the hypothesis that repeatability of testosterone levels within individuals underlies repeatable behaviors observed in our population. We measured nestling provisioning and aggressive nest defense against a heterospecific. After behavioral observations we captured either the male or female bluebird, and determined initial testosterone levels and maximum capacity of the gonads to secrete testosterone by injecting gonadotropin-releasing hormone (GnRH). We found among-individual variation in initial testosterone levels for males and females. Individual males were repeatable in both initial and GnRH-induced testosterone levels across behavioral contexts, while individual females were repeatable in GnRH-induced testosterone levels. However, testosterone levels were not significantly related to parental or nest defense behaviors, suggesting that repeatable testosterone levels may not drive repeatable parental and heterospecific nest defense behaviors in this population. The absence of a relationship between testosterone and parental and heterospecific nest defense behaviors might be due to among-individual variation in testosterone levels. Considering the sources of variation in testosterone levels may reveal why some populations exhibit high individual variation in hormone levels.


Assuntos
Agressão/fisiologia , Comportamento Animal/efeitos dos fármacos , Hormônio Liberador de Gonadotropina/farmacologia , Comportamento de Nidação/fisiologia , Aves Canoras/metabolismo , Testosterona/sangue , Agressão/efeitos dos fármacos , Animais , Feminino , Masculino , Comportamento de Nidação/efeitos dos fármacos
11.
J Exp Zool A Ecol Integr Physiol ; 327(5): 254-261, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-29356459

RESUMO

A central assumption in ecological immunology is that immune responses are costly, with costs manifesting directly (e.g., increases in metabolic rate and increased amino acid usage) or as tradeoffs with other life processes (e.g., reduced growth and reproductive success). Across taxa, host longevity, timing of maturity, and reproductive effort affect the organization of immune systems. It is reasonable, therefore, to expect that these and related factors should also affect immune activation costs. Specifically, species that spread their breeding efforts over a long lifetime should experience lower immune costs than those that mature and breed quickly and die comparatively early. Likewise, body mass should affect immune costs, as body size affects the extent to which hosts are exposed to parasites as well as how hosts can combat infections (via its effects on metabolic rates and other factors). Here, we used phylogenetic meta-regression to reveal that, in general, animals incur costs of immune activation, but small species that are relatively long-lived incur the largest costs. These patterns probably arise because of the relative need for defense when infection risk is comparatively high and fitness can only be realized over a comparatively long period. However, given the diversity of species considered here and the overall modest effects of body mass and life history on immune costs, much more research is necessary before generalizations are appropriate.


Assuntos
Tamanho Corporal/imunologia , Metabolismo Energético/imunologia , Imunidade/fisiologia , Longevidade/imunologia , Animais , Evolução Biológica , Modelos Biológicos , Reprodução/imunologia , Reprodução/fisiologia
12.
Funct Ecol ; 31(12): 2263-2273, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29398763

RESUMO

Early-life adversity can have long-lasting effects on physiological, behavioural, cognitive, and somatic processes. Consequently, these effects may alter an organism's life-history strategy and reproductive tactics.In response to early-life immune activation, we quantified levels of the acute phase protein haptoglobin (Hp) during development in male zebra finches (Taeniopygia guttata). Then, we examined the long-term impacts of early-life immune activation on an important static sexual signal, song complexity, as well as effects of early-life immune activation on the relationship between song complexity and a dynamic sexual signal, beak colouration. Finally, we performed mate-choice trials to determine if male early-life experience impacted female preference.Challenge with keyhole limpet hemocyanin (KLH) resulted in increased song complexity compared to lipopolysaccharide (LPS) treatment or the control. Hp levels were inversely correlated with song complexity. Moreover, KLH-treatment resulted in negative associations between the two sexual signals (beak colouration and song complexity). Females demonstrated some preference for KLH-treated males over controls and for control males over LPS-treated males in mate choice trials.Developmental immune activation has variable effects on the expression of secondary sexual traits in adulthood, including enhancing the expression of some traits. Because developmental levels of Hp and adult song complexity were correlated, future studies should explore a potential role for exposure to inflammation during development on song learning.Early-life adversity may differentially impact static versus dynamic signals. The use of phenotypic correlations can be a powerful tool for examining the impact of early-life experience on the associations among different traits, including sexual signals.

13.
Methods Ecol Evol ; 7(10): 1174-1181, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27800150

RESUMO

Immunological reagents for wild, non-model species are limited or often non-existent for many species.In this study, we compare the reactivity of a new anti-passerine IgY secondary antibody with existing secondary antibodies developed for use with birds. Samples from 41 species from the following six avian orders were analysed: Anseriformes (1 family, 1 species), Columbiformes (1 family, 2 species), Galliformes (1 family, 1 species), Passeriformes (16 families, 34 species), Piciformes (1 family, 2 species) and Suliformes (1 family, 1 species). Direct ELISAs were performed to detect total IgY using goat anti-passerine IgY, goat anti-chicken IgY or goat anti-bird IgY secondary antibodies.The anti-passerine antibody exhibited significantly higher IgY reactivity compared to the anti-chicken and/or anti-bird antibodies in 80% of the passerine families tested. Birds in the order Piciformes (woodpeckers) and order Suliformes (cormorants) were poorly detected by all three secondary antibodies. A comparison of serum and plasma IgY levels was made within the same individuals for two passerine species (house finch and white-crowned sparrow), and serum exhibited significantly more IgY than the plasma for all three secondary antibodies. This result indicates that serum may be preferred to plasma when measuring total antibody levels in blood.This study indicates that the anti-passerine IgY secondary antibody can effectively be used in immunological assays to detect passerine IgY for species in most passerine families and is preferred over anti-chicken and anti-bird secondary antibodies for the majority of passerine species. This anti-passerine antibody will allow for more accurate detection and quantification of IgY in more wild bird species than was possible with previously available secondary antibodies.

14.
Ecology ; 97(10): 2880-2891, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27859132

RESUMO

Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might therefore influence selection on breeding date remain unresolved. Here, we use a 36-yr dataset from a long-term, individual-based study of House Wrens (Troglodytes aedon) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment.


Assuntos
Migração Animal , Mudança Climática , Aves Canoras , Animais , Cruzamento , Reprodução , Estações do Ano , Temperatura
15.
Behav Ecol ; 27(5): 1320-1330, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27656084

RESUMO

Secondary sexual traits may convey information about individual condition. We assessed the capacity for immune challenge with lipopolysaccharide (LPS) or keyhole limpet hemocyanin (KLH) during the prenatal and early postnatal stages to impact beak color development and expression in captive zebra finches. In addition, we tested whether adult immune challenge impacted beak color, and if early-life experience was influential. Immune challenge with KLH early in life slowed development of red beak coloration, and males challenged with KLH as nestlings had reduced red coloration as adults. Following adult KLH challenge, males exhibited a decline in beak redness. Birds challenged with KLH during development produced more anti-KLH antibodies after adult challenge. There was a significant interaction between young treatment and anti-KLH antibody production; for males not challenged with KLH early in life, individuals that mounted a weaker antibody response lost more red coloration after challenge than males mounting a stronger antibody response. Based on models of avian vision, these differences in beak coloration should be detectable to the finches. In contrast to previous studies, we found no effect of early-life or adult challenge with LPS on any aspects of beak coloration. These results provide evidence that beak color reflects developmental and current conditions, and that the signal is linked to critical physiological processes.

16.
Gen Comp Endocrinol ; 229: 92-9, 2016 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-26972151

RESUMO

Consistent behavioral differences among individuals, or personalities, have been hypothesized to arise as a result of consistent individual differences in hormone levels. Individual variation in baseline hormone levels or hormonal similarity within a breeding pair may be related to reproductive success, as suggested by the corticosterone-fitness hypothesis and the hormonal similarity hypothesis, respectively. In a population of Eastern bluebirds (Sialia sialis) with repeatable behavioral expression and coordination of behavior within pairs, we tested if baseline androgen and corticosterone levels are related to behavioral expression, if coordination in behavior within pairs is facilitated by hormonal coordination, and if baseline hormone levels are related to fledging success at the individual or pair level. We found no significant relationship between hormone levels and nest visit rate or nest defense for either sex. Androgen and corticosterone levels were not correlated within pairs, but pairs in which males exhibited more aggressive nest defense behavior than females were also more different in androgen levels. Females with higher baseline corticosterone levels fledged more young, but hormonal similarity within pairs was not related to fledging success. Our results provide support for the corticosterone-adaptation hypothesis, which suggests that elevation of baseline corticosterone levels may occur during breeding to meet increased energetic demands.


Assuntos
Corticosterona/metabolismo , Comportamento de Nidação/fisiologia , Reprodução , Animais , Aves , Cruzamento , Feminino , Masculino
17.
Curr Opin Behav Sci ; 7: 21-27, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26858969

RESUMO

Immune activation early in life can program adult behavioral expression. Previous research on birds has documented effects of parasite exposure and immune challenges early in life on dispersal, song, personality, learning and feather pecking. However, the mechanisms responsible for mediating these programming effects are unknown. Candidate brain regions that may be most sensitive include the hippocampus and HVC. Without an understanding of mechanism, it is difficult to assess if programmed behaviors represent pathological side effects or behavioral modifications with benefits to either hosts or parasites. Future research on birds promises to provide novel insight into the adaptive value of programming effects of early life immune activation and the capacity for selection to buffer hosts against negative effects.

18.
Brain Behav Immun ; 45: 71-9, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25535860

RESUMO

Both maternal exposure to stressors and exposure of offspring to stressors during early life can have lifelong effects on the physiology and behavior of offspring. Stress exposure can permanently shape an individual's phenotype by influencing the development of the hypothalamic-pituitary-adrenal (HPA) axis, which is responsible for the production and regulation of glucocorticoids such as corticosterone (CORT). In this study we used captive zebra finches (Taeniopygia guttata) to examine the effects of matching and mismatching maternal and early post-natal exposure to one of two types of antigens or a control on HPA axis reactivity in adult offspring. Prior to breeding, adult females were injected with lipopolysaccharide (LPS), keyhole limpet hemocyanin (KLH) or a control. Offspring of females in each of the three treatments were themselves exposed to LPS, KLH or a control injection at 5 and 28days post-hatch. When offspring were at least 18months of age, standardized capture and restraint stress tests were conducted to determine the impact of the treatments on adult stress responsiveness. We found significant interaction effects between maternal and offspring treatments on stress-induced CORT levels, and evidence in support of the environment matching hypothesis for KLH-treated birds, not LPS-treated birds. KLH-treated offspring of KLH-treated mothers exhibited reduced stress-induced CORT levels, whereas LPS-treated or control offspring of KLH-treated mothers exhibited elevated stress-induced CORT levels. Although the treatment effects on baseline CORT were non-significant, the overall pattern was similar to the effects observed on stress-induced CORT levels. Our results highlight the complex nature of HPA axis programming, and to our knowledge, provide the first evidence that a match or mismatch between pre and post-natal antigen exposure can have life-long consequences for HPA axis function.


Assuntos
Adjuvantes Imunológicos/farmacologia , Corticosterona/metabolismo , Hemocianinas/farmacologia , Sistema Hipotálamo-Hipofisário/metabolismo , Lipopolissacarídeos/farmacologia , Exposição Materna , Sistema Hipófise-Suprarrenal/metabolismo , Estresse Fisiológico/fisiologia , Animais , Feminino , Tentilhões , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Oviparidade , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Estresse Fisiológico/efeitos dos fármacos
19.
Physiol Biochem Zool ; 87(5): 740-51, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25244385

RESUMO

Maternally transferred antibodies have been documented in a wide range of taxa and are thought to adaptively provide protection against parasites and pathogens while the offspring immune system is developing. In most birds, transfer occurs when females deposit immunoglobulin Y into the egg yolk, and it is proportional to the amount in the female's plasma. Maternal antibodies can provide short-term passive protection as well as specific and nonspecific immunological priming, but high levels of maternal antibody can result in suppression of the offspring's humoral immune response. We injected adult female zebra finches (Taeniopygia guttata) with one of two antigens (lipopolysaccharide [LPS] or keyhole limpet hemocyanin [KLH]) or a control and then injected offspring with LPS, KLH, or a control on days 5 and 28 posthatch to examine the impact of maternally transferred antibodies on the ontogeny of the offspring's humoral immune system. We found that offspring of females exposed to KLH had elevated levels of KLH-reactive antibody over the first 17-28 days posthatch but reduced KLH-specific antibody production between days 28 and 36. We also found that offspring exposed to either LPS or KLH exhibited reduced total antibody levels, compared to offspring that received a control injection. These results indicate that high levels of maternal antibodies or antigen exposure during development can have negative repercussions on short-term antibody production and may have long-term fitness repercussions for the offspring.


Assuntos
Anticorpos/imunologia , Imunidade Humoral/efeitos dos fármacos , Imunoglobulinas/biossíntese , Aves Canoras/imunologia , Animais , Feminino , Hemocianinas/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Aves Canoras/crescimento & desenvolvimento
20.
Trends Ecol Evol ; 28(5): 290-6, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23518414

RESUMO

Across taxa, both neural growth and cognitive function show considerable developmental plasticity. Data from studies of decision making, learning, and discrimination demonstrate that early life conditions have an impact on subsequent neural growth, maintenance, and cognition, with important ecological and evolutionary implications. Here, we provide a synthesis of the evidence that spatial and vocal learning are condition dependent, addressing what is known about their physiological control and the functional explanations. Neural investment is predicted to be affected by environmental conditions, but the shape of the response should depend on the fitness benefits of the cognitive traits under control. From an evolutionary perspective, traits promoting resistance to environmental perturbations should be favored when the cognitive trait is a crucial determinant of fitness.


Assuntos
Evolução Biológica , Cognição/fisiologia , Ecossistema , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Monitoramento Ambiental , Memória , Estações do Ano , Estresse Fisiológico , Vocalização Animal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...