Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 19(14): 4451-4460, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-36453538

RESUMO

The electron density of a molecule or material has recently received major attention as a target quantity of machine-learning models. A natural choice to construct a model that yields transferable and linear-scaling predictions is to represent the scalar field using a multicentered atomic basis analogous to that routinely used in density fitting approximations. However, the nonorthogonality of the basis poses challenges for the learning exercise, as it requires accounting for all the atomic density components at once. We devise a gradient-based approach to directly minimize the loss function of the regression problem in an optimized and highly sparse feature space. In so doing, we overcome the limitations associated with adopting an atom-centered model to learn the electron density over arbitrarily complex data sets, obtaining very accurate predictions using a comparatively small training set. The enhanced framework is tested on 32-molecule periodic cells of liquid water, presenting enough complexity to require an optimal balance between accuracy and computational efficiency. We show that starting from the predicted density a single Kohn-Sham diagonalization step can be performed to access total energy components that carry an error of just 0.1 meV/atom with respect to the reference density functional calculations. Finally, we test our method on the highly heterogeneous QM9 benchmark data set, showing that a small fraction of the training data is enough to derive ground-state total energies within chemical accuracy.

2.
J Chem Theory Comput ; 17(11): 7203-7214, 2021 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-34669406

RESUMO

We introduce a local machine-learning method for predicting the electron densities of periodic systems. The framework is based on a numerical, atom-centered auxiliary basis, which enables an accurate expansion of the all-electron density in a form suitable for learning isolated and periodic systems alike. We show that, using this formulation, the electron densities of metals, semiconductors, and molecular crystals can all be accurately predicted using symmetry-adapted Gaussian process regression models, properly adjusted for the nonorthogonal nature of the basis. These predicted densities enable the efficient calculation of electronic properties, which present errors on the order of tens of meV/atom when compared to ab initio density-functional calculations. We demonstrate the key power of this approach by using a model trained on ice unit cells containing only 4 water molecules to predict the electron densities of cells containing up to 512 molecules and see no increase in the magnitude of the errors of derived electronic properties when increasing the system size. Indeed, we find that these extrapolated derived energies are more accurate than those predicted using a direct machine-learning model. Finally, on heterogeneous data sets SALTED can predict electron densities with errors below 4%.

3.
Chem Rev ; 121(16): 9759-9815, 2021 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-34310133

RESUMO

The first step in the construction of a regression model or a data-driven analysis, aiming to predict or elucidate the relationship between the atomic-scale structure of matter and its properties, involves transforming the Cartesian coordinates of the atoms into a suitable representation. The development of atomic-scale representations has played, and continues to play, a central role in the success of machine-learning methods for chemistry and materials science. This review summarizes the current understanding of the nature and characteristics of the most commonly used structural and chemical descriptions of atomistic structures, highlighting the deep underlying connections between different frameworks and the ideas that lead to computationally efficient and universally applicable models. It emphasizes the link between properties, structures, their physical chemistry, and their mathematical description, provides examples of recent applications to a diverse set of chemical and materials science problems, and outlines the open questions and the most promising research directions in the field.

4.
Chimia (Aarau) ; 74(4): 232-236, 2020 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-32331538

RESUMO

Machine-learning in quantum chemistry is currently booming, with reported applications spanning all molecular properties from simple atomization energies to complex mathematical objects such as the many-body wavefunction. Due to its central role in density functional theory, the electron density is a particularly compelling target for non-linear regression. Nevertheless, the scalability and the transferability of the existing machine-learning models of ρ(r) are limited by its complex rotational symmetries. Recently, in collaboration with Ceriotti and coworkers, we combined an efficient electron density decomposition scheme with a local regression framework based on symmetry-adapted Gaussian process regression able to accurately describe the covariance of the electron density spherical tensor components. The learning exercise is performed on local environments, allowing high transferability and linear-scaling of the prediction with respect to the number of atoms. Here, we review the main characteristics of the model and show its predictive power in a series of applications. The scalability and transferability of the trained model are demonstrated through the prediction of the electron density of Ubiquitin.

5.
Chem Sci ; 12(6): 2078-2090, 2020 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-34163971

RESUMO

Electronic nearsightedness is one of the fundamental principles that governs the behavior of condensed matter and supports its description in terms of local entities such as chemical bonds. Locality also underlies the tremendous success of machine-learning schemes that predict quantum mechanical observables - such as the cohesive energy, the electron density, or a variety of response properties - as a sum of atom-centred contributions, based on a short-range representation of atomic environments. One of the main shortcomings of these approaches is their inability to capture physical effects ranging from electrostatic interactions to quantum delocalization, which have a long-range nature. Here we show how to build a multi-scale scheme that combines in the same framework local and non-local information, overcoming such limitations. We show that the simplest version of such features can be put in formal correspondence with a multipole expansion of permanent electrostatics. The data-driven nature of the model construction, however, makes this simple form suitable to tackle also different types of delocalized and collective effects. We present several examples that range from molecular physics to surface science and biophysics, demonstrating the ability of this multi-scale approach to model interactions driven by electrostatics, polarization and dispersion, as well as the cooperative behavior of dielectric response functions.

6.
J Chem Phys ; 151(20): 204105, 2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31779318

RESUMO

The most successful and popular machine learning models of atomic-scale properties derive their transferability from a locality ansatz. The properties of a large molecule or a bulk material are written as a sum over contributions that depend on the configurations within finite atom-centered environments. The obvious downside of this approach is that it cannot capture nonlocal, nonadditive effects such as those arising due to long-range electrostatics or quantum interference. We propose a solution to this problem by introducing nonlocal representations of the system, which are remapped as feature vectors that are defined locally and are equivariant in O(3). We consider, in particular, one form that has the same asymptotic behavior as the electrostatic potential. We demonstrate that this framework can capture nonlocal, long-range physics by building a model for the electrostatic energy of randomly distributed point-charges, for the unrelaxed binding curves of charged organic molecular dimers, and for the electronic dielectric response of liquid water. By combining a representation of the system that is sensitive to long-range correlations with the transferability of an atom-centered additive model, this method outperforms current state-of-the-art machine-learning schemes and provides a conceptual framework to incorporate nonlocal physics into atomistic machine learning.

7.
Sci Data ; 6(1): 152, 2019 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-31427579

RESUMO

While density functional theory (DFT) is often an accurate and efficient methodology for evaluating molecular properties such as energies and multipole moments, this approach often yields larger errors for response properties such as the dipole polarizability (α), which describes the tendency of a molecule to form an induced dipole moment in the presence of an electric field. In this work, we provide static α tensors (and other molecular properties such as total energy components, dipole and quadrupole moments, etc.) computed using quantum chemical (QC) and DFT methodologies for all 7,211 molecules in the QM7b database. We also provide the same quantities for the 52 molecules in the AlphaML showcase database, which includes the DNA/RNA nucleobases, uncharged amino acids, several open-chain and cyclic carbohydrates, five popular pharmaceutical molecules, and 23 isomers of C8Hn. All QC calculations were performed using linear-response coupled-cluster theory including single and double excitations (LR-CCSD), a sophisticated approach for electron correlation, and the d-aug-cc-pVDZ basis set to mitigate basis set incompleteness error. DFT calculations employed the B3LYP and SCAN0 hybrid functionals, in conjunction with d-aug-cc-pVDZ (B3LYP and SCAN0) and d-aug-cc-pVTZ (B3LYP).

8.
Proc Natl Acad Sci U S A ; 116(9): 3401-3406, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30733292

RESUMO

The molecular dipole polarizability describes the tendency of a molecule to change its dipole moment in response to an applied electric field. This quantity governs key intra- and intermolecular interactions, such as induction and dispersion; plays a vital role in determining the spectroscopic signatures of molecules; and is an essential ingredient in polarizable force fields. Compared with other ground-state properties, an accurate prediction of the molecular polarizability is considerably more difficult, as this response quantity is quite sensitive to the underlying electronic structure description. In this work, we present highly accurate quantum mechanical calculations of the static dipole polarizability tensors of 7,211 small organic molecules computed using linear response coupled cluster singles and doubles theory (LR-CCSD). Using a symmetry-adapted machine-learning approach, we demonstrate that it is possible to predict the LR-CCSD molecular polarizabilities of these small molecules with an error that is an order of magnitude smaller than that of hybrid density functional theory (DFT) at a negligible computational cost. The resultant model is robust and transferable, yielding molecular polarizabilities for a diverse set of 52 larger molecules (including challenging conjugated systems, carbohydrates, small drugs, amino acids, nucleobases, and hydrocarbon isomers) at an accuracy that exceeds that of hybrid DFT. The atom-centered decomposition implicit in our machine-learning approach offers some insight into the shortcomings of DFT in the prediction of this fundamental quantity of interest.

9.
ACS Cent Sci ; 5(1): 57-64, 2019 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-30693325

RESUMO

The electronic charge density plays a central role in determining the behavior of matter at the atomic scale, but its computational evaluation requires demanding electronic-structure calculations. We introduce an atom-centered, symmetry-adapted framework to machine-learn the valence charge density based on a small number of reference calculations. The model is highly transferable, meaning it can be trained on electronic-structure data of small molecules and used to predict the charge density of larger compounds with low, linear-scaling cost. Applications are shown for various hydrocarbon molecules of increasing complexity and flexibility, and demonstrate the accuracy of the model when predicting the density on octane and octatetraene after training exclusively on butane and butadiene. This transferable, data-driven model can be used to interpret experiments, accelerate electronic structure calculations, and compute electrostatic interactions in molecules and condensed-phase systems.

10.
Chem Sci ; 10(41): 9424-9432, 2019 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-32055318

RESUMO

Chemists continuously harvest the power of non-covalent interactions to control phenomena in both the micro- and macroscopic worlds. From the quantum chemical perspective, the strategies essentially rely upon an in-depth understanding of the physical origin of these interactions, the quantification of their magnitude and their visualization in real-space. The total electron density ρ( r ) represents the simplest yet most comprehensive piece of information available for fully characterizing bonding patterns and non-covalent interactions. The charge density of a molecule can be computed by solving the Schrödinger equation, but this approach becomes rapidly demanding if the electron density has to be evaluated for thousands of different molecules or very large chemical systems, such as peptides and proteins. Here we present a transferable and scalable machine-learning model capable of predicting the total electron density directly from the atomic coordinates. The regression model is used to access qualitative and quantitative insights beyond the underlying ρ( r ) in a diverse ensemble of sidechain-sidechain dimers extracted from the BioFragment database (BFDb). The transferability of the model to more complex chemical systems is demonstrated by predicting and analyzing the electron density of a collection of 8 polypeptides.

11.
Phys Rev Lett ; 120(3): 036002, 2018 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-29400528

RESUMO

Statistical learning methods show great promise in providing an accurate prediction of materials and molecular properties, while minimizing the need for computationally demanding electronic structure calculations. The accuracy and transferability of these models are increased significantly by encoding into the learning procedure the fundamental symmetries of rotational and permutational invariance of scalar properties. However, the prediction of tensorial properties requires that the model respects the appropriate geometric transformations, rather than invariance, when the reference frame is rotated. We introduce a formalism that extends existing schemes and makes it possible to perform machine learning of tensorial properties of arbitrary rank, and for general molecular geometries. To demonstrate it, we derive a tensor kernel adapted to rotational symmetry, which is the natural generalization of the smooth overlap of atomic positions kernel commonly used for the prediction of scalar properties at the atomic scale. The performance and generality of the approach is demonstrated by learning the instantaneous response to an external electric field of water oligomers of increasing complexity, from the isolated molecule to the condensed phase.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...