Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Regen Med ; 8(1): 26, 2023 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-37236990

RESUMO

Ischemic heart disease, which is often associated with irreversibly damaged heart muscle, is a major global health burden. Here, we report the potential of stem cell-derived committed cardiac progenitors (CCPs) have in regenerative cardiology. Human pluripotent embryonic stem cells were differentiated to CCPs on a laminin 521 + 221 matrix, characterized with bulk and single-cell RNA sequencing, and transplanted into infarcted pig hearts. CCPs differentiated for eleven days expressed a set of genes showing higher expression than cells differentiated for seven days. Functional heart studies revealed significant improvement in left ventricular ejection fraction at four and twelve weeks following transplantation. We also observed significant improvements in ventricular wall thickness and a reduction in infarction size after CCP transplantation (p-value < 0.05). Immunohistology analyses revealed in vivo maturation of the CCPs into cardiomyocytes (CM). We observed temporary episodes of ventricular tachyarrhythmia (VT) in four pigs and persistent VT in one pig, but the remaining five pigs exhibited normal sinus rhythm. Importantly, all pigs survived without the formation of any tumors or VT-related abnormalities. We conclude that pluripotent stem cell-derived CCPs constitute a promising possibility for myocardial infarction treatment and that they may positively impact regenerative cardiology.

2.
Sci Rep ; 12(1): 21049, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473917

RESUMO

Mitochondrial dysfunction induced by acute cardiac ischemia-reperfusion (IR), may increase susceptibility to arrhythmias by perturbing energetics, oxidative stress production and calcium homeostasis. Although changes in mitochondrial morphology are known to impact on mitochondrial function, their role in cardiac arrhythmogenesis is not known. To assess action potential duration (APD) in cardiomyocytes from the Mitofusins-1/2 (Mfn1/Mfn2)-double-knockout (Mfn-DKO) compared to wild-type (WT) mice, optical-electrophysiology was conducted. To measure conduction velocity (CV) in atrial and ventricular tissue from the Mfn-DKO and WT mice, at both baseline and following simulated acute IR, multi-electrode array (MEA) was employed. Intracellular localization of connexin-43 (Cx43) at baseline was evaluated by immunohistochemistry, while Cx-43 phosphorylation was assessed by Western-blotting. Mfn-DKO cardiomyocytes demonstrated an increased APD. At baseline, CV was significantly lower in the left ventricle of the Mfn-DKO mice. CV decreased with simulated-ischemia and returned to baseline levels during simulated-reperfusion in WT but not in atria of Mfn-DKO mice. Mfn-DKO hearts displayed increased Cx43 lateralization, although phosphorylation of Cx43 at Ser-368 did not differ. In summary, Mfn-DKO mice have increased APD and reduced CV at baseline and impaired alterations in CV following cardiac IR. These findings were associated with increased Cx43 lateralization, suggesting that the mitofusins may impact on post-MI cardiac-arrhythmogenesis.


Assuntos
Conservadores da Densidade Óssea , Traumatismos Craniocerebrais , Camundongos , Animais , Eletrofisiologia Cardíaca , Isquemia
3.
FASEB J ; 34(8): 11143-11167, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32627872

RESUMO

Exercise modulates metabolism and the gut microbiome. Brief exposure to low mT-range pulsing electromagnetic fields (PEMFs) was previously shown to accentuate in vitro myogenesis and mitochondriogenesis by activating a calcium-mitochondrial axis upstream of PGC-1α transcriptional upregulation, recapitulating a genetic response implicated in exercise-induced metabolic adaptations. We compared the effects of analogous PEMF exposure (1.5 mT, 10 min/week), with and without exercise, on systemic metabolism and gut microbiome in four groups of mice: (a) no intervention; (b) PEMF treatment; (c) exercise; (d) exercise and PEMF treatment. The combination of PEMFs and exercise for 6 weeks enhanced running performance and upregulated muscular and adipose Pgc-1α transcript levels, whereas exercise alone was incapable of elevating Pgc-1α levels. The gut microbiome Firmicutes/Bacteroidetes ratio decreased with exercise and PEMF exposure, alone or in combination, which has been associated in published studies with an increase in lean body mass. After 2 months, brief PEMF treatment alone increased Pgc-1α and mitohormetic gene expression and after >4 months PEMF treatment alone enhanced oxidative muscle expression, fatty acid oxidation, and reduced insulin levels. Hence, short-term PEMF treatment was sufficient to instigate PGC-1α-associated transcriptional cascades governing systemic mitohormetic adaptations, whereas longer-term PEMF treatment was capable of inducing related metabolic adaptations independently of exercise.


Assuntos
Microbioma Gastrointestinal/fisiologia , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Adaptação Fisiológica/fisiologia , Animais , Bacteroidetes/crescimento & desenvolvimento , Composição Corporal/fisiologia , Ácidos Graxos/metabolismo , Feminino , Firmicutes/crescimento & desenvolvimento , Seguimentos , Expressão Gênica/fisiologia , Insulina/metabolismo , Campos Magnéticos , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Condicionamento Físico Animal/fisiologia , Transcrição Gênica/fisiologia , Ativação Transcricional/fisiologia
4.
Stem Cell Res Ther ; 11(1): 118, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32183888

RESUMO

BACKGROUND: The production of large quantities of cardiomyocyte is essential for the needs of cellular therapies. This study describes the selection of a human-induced pluripotent cell (hiPSC) line suitable for production of cardiomyocytes in a fully integrated bioprocess of stem cell expansion and differentiation in microcarrier stirred tank reactor. METHODS: Five hiPSC lines were evaluated first for their cardiac differentiation efficiency in monolayer cultures followed by their expansion and differentiation compatibility in microcarrier (MC) cultures under continuous stirring conditions. RESULTS: Three cell lines were highly cardiogenic but only one (FR202) of them was successfully expanded on continuous stirring MC cultures. FR202 was thus selected for cardiac differentiation in a 22-day integrated bioprocess under continuous stirring in a stirred tank bioreactor. In summary, we integrated a MC-based hiPSC expansion (phase 1), CHIR99021-induced cardiomyocyte differentiation step (phase 2), purification using the lactate-based treatment (phase 3) and cell recovery step (phase 4) into one process in one bioreactor, under restricted oxygen control (< 30% DO) and continuous stirring with periodic batch-type media exchanges. High density of undifferentiated hiPSC (2 ± 0.4 × 106 cells/mL) was achieved in the expansion phase. By controlling the stirring speed and DO levels in the bioreactor cultures, 7.36 ± 1.2 × 106 cells/mL cardiomyocytes with > 80% Troponin T were generated in the CHIR99021-induced differentiation phase. By adding lactate in glucose-free purification media, the purity of cardiomyocytes was enhanced (> 90% Troponin T), with minor cell loss as indicated by the increase in sub-G1 phase and the decrease of aggregate sizes. Lastly, we found that the recovery period is important for generating purer and functional cardiomyocytes (> 96% Troponin T). Three independent runs in a 300-ml working volume confirmed the robustness of this process. CONCLUSION: A streamlined and controllable platform for large quantity manufacturing of pure functional atrial, ventricular and nodal cardiomyocytes on MCs in conventional-type stirred tank bioreactors was established, which can be further scaled up and translated to a good manufacturing practice-compliant production process, to fulfill the quantity requirements of the cellular therapeutic industry.


Assuntos
Células-Tronco Pluripotentes Induzidas , Reatores Biológicos , Técnicas de Cultura de Células , Diferenciação Celular , Células Cultivadas , Humanos , Miócitos Cardíacos
5.
J Strength Cond Res ; 33(10): 2602-2607, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31361736

RESUMO

Grishina, EE, Zmijewski, P, Semenova, EA, Cieszczyk, P, Huminska-Lisowska, K, Michalowska-Sawczyn, M, Maculewicz, E, Crewther, B, Orysiak, J, Kostryukova, ES, Kulemin, NA, Borisov, OV, Khabibova, SA, Larin, AK, Pavlenko, AV, Lyubaeva, EV, Popov, DV, Lysenko, EA, Vepkhvadze, TF, Lednev, EM, Bondareva, EA, Erskine, RM, Generozov, EV, and Ahmetov, II. Three DNA polymorphisms previously identified as markers for handgrip strength are associated with strength in weightlifters and muscle fiber hypertrophy. J Strength Cond Res 33(10): 2602-2607, 2019-Muscle strength is a highly heritable trait. So far, 196 single nucleotide polymorphisms (SNPs) associated with handgrip strength have been identified in 3 genome-wide association studies. The aim of our study was to validate the association of 35 SNPs with strength of elite Russian weightlifters and replicate the study in Polish weightlifters. Genotyping was performed using micro-array analysis or real-time polymerase chain reaction. We found that the rs12055409 G-allele near the MLN gene (p = 0.004), the rs4626333 G-allele near the ZNF608 gene (p = 0.0338), and the rs2273555 A-allele in the GBF1 gene (p = 0.0099) were associated with greater competition results (total lifts in snatch and clean and jerk adjusted for sex and weight) in 53 elite Russian weightlifters. In the replication study of 76 sub-elite Polish weightlifters, rs4626333 GG homozygotes demonstrated greater competition results (p = 0.0155) and relative muscle mass (p = 0.046), adjusted for sex, weight, and age, compared with carriers of the A-allele. In the following studies, we tested the hypotheses that these SNPs would be associated with skeletal muscle hypertrophy and handgrip strength. We found that the number of strength-associated alleles was positively associated with fast-twitch muscle fiber cross-sectional area in the independent cohort of 20 male power athletes (p = 0.021) and with handgrip strength in 87 physically active individuals (p = 0.015). In conclusion, by replicating previous findings in 4 independent studies, we demonstrate that the rs12055409 G-, rs4626333 G-, and rs2273555 A-alleles are associated with higher levels of strength, muscle mass, and muscle fiber size.


Assuntos
Desempenho Atlético/fisiologia , Força da Mão/fisiologia , Fibras Musculares de Contração Rápida/citologia , Força Muscular/genética , Levantamento de Peso/fisiologia , Adolescente , Adulto , Alelos , DNA/análise , Feminino , Estudo de Associação Genômica Ampla , Fatores de Troca do Nucleotídeo Guanina/genética , Homozigoto , Humanos , Hipertrofia/genética , Masculino , Proteínas Musculares/genética , Força Muscular/fisiologia , Polônia , Polimorfismo de Nucleotídeo Único , Federação Russa , Fatores de Transcrição/genética , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...