Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
EMBO J ; 41(24): e111132, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36345783

RESUMO

The cerebral cortex contains billions of neurons, and their disorganization or misspecification leads to neurodevelopmental disorders. Understanding how the plethora of projection neuron subtypes are generated by cortical neural stem cells (NSCs) is a major challenge. Here, we focused on elucidating the transcriptional landscape of murine embryonic NSCs, basal progenitors (BPs), and newborn neurons (NBNs) throughout cortical development. We uncover dynamic shifts in transcriptional space over time and heterogeneity within each progenitor population. We identified signature hallmarks of NSC, BP, and NBN clusters and predict active transcriptional nodes and networks that contribute to neural fate specification. We find that the expression of receptors, ligands, and downstream pathway components is highly dynamic over time and throughout the lineage implying differential responsiveness to signals. Thus, we provide an expansive compendium of gene expression during cortical development that will be an invaluable resource for studying neural developmental processes and neurodevelopmental disorders.


Assuntos
Células-Tronco Neurais , Neurônios , Animais , Camundongos , Diferenciação Celular , Linhagem da Célula/genética , Córtex Cerebral , Células-Tronco Embrionárias , Neurogênese/genética , Neurônios/metabolismo
2.
PLoS Biol ; 20(3): e3001596, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35353806

RESUMO

Hedgehog (HH) signaling is important for embryonic pattering and stem cell differentiation. The G protein-coupled receptor (GPCR) Smoothened (SMO) is the key HH signal transducer modulating both transcription-dependent and transcription-independent responses. We show that SMO protects naive mouse embryonic stem cells (ESCs) from dissociation-induced cell death. We exploited this SMO dependency to perform a genetic screen in haploid ESCs where we identify the Golgi proteins TMED2 and TMED10 as factors for SMO regulation. Super-resolution microscopy shows that SMO is normally retained in the endoplasmic reticulum (ER) and Golgi compartments, and we demonstrate that TMED2 binds to SMO, preventing localization to the plasma membrane. Mutation of TMED2 allows SMO accumulation at the plasma membrane, recapitulating early events after HH stimulation. We demonstrate the physiologic relevance of this interaction in neural differentiation, where TMED2 functions to repress HH signal strength. Identification of TMED2 as a binder and upstream regulator of SMO opens the way for unraveling the events in the ER-Golgi leading to HH signaling activation.


Assuntos
Proteínas Hedgehog , Receptores Acoplados a Proteínas G , Animais , Membrana Celular/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas de Membrana , Camundongos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/genética , Receptor Smoothened/genética , Receptor Smoothened/metabolismo , Proteínas de Transporte Vesicular
3.
Mol Neurobiol ; 57(7): 3206-3218, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32506380

RESUMO

Development and normal physiology of the nervous system require proliferation and differentiation of stem and progenitor cells in a strictly controlled manner. The number of cells generated depends on the type of cell division, the cell cycle length, and the fraction of cells that exit the cell cycle to become quiescent or differentiate. The underlying processes are tightly controlled and modulated by cyclin-dependent kinases (Cdks) and their interactions with cyclins and Cdk inhibitors (CKIs). Studies performed in the nervous system with mouse models lacking individual Cdks, cyclins, and CKIs, or combinations thereof, have shown that many of these molecules control proliferation rates in a cell-type specific and time-dependent manner. In this review, we will provide an update on the in vivo studies on cyclins, Cdks, and CKIs in neuronal and glial tissue. The goal is to highlight their impact on proliferation processes during the development of the peripheral and central nervous system, including and comparing normal and pathological conditions in the adult.


Assuntos
Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Quinases Ciclina-Dependentes/metabolismo , Ciclinas/metabolismo , Sistema Nervoso/metabolismo , Animais , Camundongos
4.
Sci Rep ; 10(1): 4625, 2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32170161

RESUMO

Neural stem cells (NSCs) generate neurons of the cerebral cortex with distinct morphologies and functions. How specific neuron production, differentiation and migration are orchestrated is unclear. Hippo signaling regulates gene expression through Tead transcription factors (TFs). We show that Hippo transcriptional coactivators Yap1/Taz and the Teads have distinct functions during cortical development. Yap1/Taz promote NSC maintenance and Satb2+ neuron production at the expense of Tbr1+ neuron generation. However, Teads have moderate effects on NSC maintenance and do not affect Satb2+ neuron differentiation. Conversely, whereas Tead2 blocks Tbr1+ neuron formation, Tead1 and Tead3 promote this early fate. In addition, we found that Hippo effectors regulate neuronal migration to the cortical plate (CP) in a reciprocal fashion, that ApoE, Dab2 and Cyr61 are Tead targets, and these contribute to neuronal fate determination and migration. Our results indicate that multifaceted Hippo signaling is pivotal in different aspects of cortical development.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Proteínas de Ligação a DNA/genética , Transdução de Sinais , Fatores de Transcrição/metabolismo , Animais , Moléculas de Adesão Celular Neuronais/genética , Linhagem Celular , Córtex Cerebral/metabolismo , Imunoprecipitação da Cromatina , Proteínas de Ligação a DNA/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Via de Sinalização Hippo , Humanos , Camundongos , Proteínas do Tecido Nervoso/genética , Células-Tronco Neurais , Especificidade de Órgãos , Proteínas Serina-Treonina Quinases/genética , Proteína Reelina , Serina Endopeptidases/genética , Fatores de Transcrição de Domínio TEA , Fatores de Transcrição/genética
5.
Dev Neurobiol ; 78(7): 660-670, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29570951

RESUMO

Little is known about the molecular players driving proliferation of neural progenitor cells (NPCs) during embryonic mouse development. Here, we demonstrate that proliferation of NPCs in the developing forebrain depends on a particular combination of cell cycle regulators. We have analyzed the requirements for members of the cyclin-dependent kinase (cdk) family using cdk-deficient mice. In the absence of either cdk4 or cdk6, which are both regulators of the G1 phase of the cell cycle, we found no significant effects on the proliferation rate of cortical progenitor cells. However, concomitant loss of cdk4 and cdk6 led to a drastic decrease in the proliferation rate of NPCs, specifically the basal progenitor cells of both the dorsal and ventral forebrain at embryonic day 13.5 (E13.5). Moreover, basal progenitors in the forebrain of Cdk4;Cdk6 double mutant mice exhibited altered cell cycle characteristics. Cdk4;cdk6 deficiency led to an increase in cell cycle length and cell cycle exit of mutant basal progenitor cells in comparison to controls. In contrast, concomitant ablation of cdk2 and cdk6 had no effect on the proliferation of NCPs. Together, our data demonstrate that the expansion of the basal progenitor pool in the developing telencephalon is dependent on the presence of distinct combinations of cdk molecules. Our results provide further evidence for differences in the regulation of proliferation between apical and basal progenitors during cortical development. © 2018 Wiley Periodicals, Inc. Develop Neurobiol 78: 660-670, 2018.


Assuntos
Proliferação de Células/fisiologia , Quinase 4 Dependente de Ciclina/deficiência , Quinase 6 Dependente de Ciclina/deficiência , Prosencéfalo/embriologia , Prosencéfalo/metabolismo , Células-Tronco/metabolismo , Animais , Contagem de Células , Ciclo Celular/fisiologia , Quinase 4 Dependente de Ciclina/genética , Quinase 6 Dependente de Ciclina/genética , Camundongos Knockout , Prosencéfalo/patologia , Células-Tronco/patologia
6.
Cell Stem Cell ; 19(5): 653-662, 2016 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-27545503

RESUMO

Adult neural stem cells (NSCs) are defined by their inherent capacity to self-renew and give rise to neurons, astrocytes, and oligodendrocytes. In vivo, however, hippocampal NSCs do not generate oligodendrocytes for reasons that have remained enigmatic. Here, we report that deletion of Drosha in adult dentate gyrus NSCs activates oligodendrogenesis and reduces neurogenesis at the expense of gliogenesis. We further find that Drosha directly targets NFIB to repress its expression independently of Dicer and microRNAs. Knockdown of NFIB in Drosha-deficient hippocampal NSCs restores neurogenesis, suggesting that the Drosha/NFIB mechanism robustly prevents oligodendrocyte fate acquisition in vivo. Taken together, our findings establish that adult hippocampal NSCs inherently possess multilineage potential but that Drosha functions as a molecular barrier preventing oligodendrogenesis.


Assuntos
Células-Tronco Adultas/citologia , Envelhecimento/metabolismo , Hipocampo/citologia , Células-Tronco Multipotentes/citologia , Fatores de Transcrição NFI/metabolismo , Células-Tronco Neurais/citologia , Ribonuclease III/metabolismo , Células-Tronco Adultas/metabolismo , Animais , Sequência de Bases , Diferenciação Celular , Giro Denteado/citologia , Deleção de Genes , Técnicas de Silenciamento de Genes , Camundongos , Camundongos Knockout , Células-Tronco Multipotentes/metabolismo , Fatores de Transcrição NFI/genética , Células-Tronco Neurais/metabolismo , Neurogênese/genética , Oligodendroglia/citologia , Oligodendroglia/metabolismo , Ligação Proteica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
7.
Front Aging Neurosci ; 8: 163, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27458372

RESUMO

Olfactory receptors (ORs) and down-stream functional signaling molecules adenylyl cyclase 3 (AC3), olfactory G protein α subunit (Gαolf), OR transporters receptor transporter proteins 1 and 2 (RTP1 and RTP2), receptor expression enhancing protein 1 (REEP1), and UDP-glucuronosyltransferases (UGTs) are expressed in neurons of the human and murine central nervous system (CNS). In vitro studies have shown that these receptors react to external stimuli and therefore are equipped to be functional. However, ORs are not directly related to the detection of odors. Several molecules delivered from the blood, cerebrospinal fluid, neighboring local neurons and glial cells, distant cells through the extracellular space, and the cells' own self-regulating internal homeostasis can be postulated as possible ligands. Moreover, a single neuron outside the olfactory epithelium expresses more than one receptor, and the mechanism of transcriptional regulation may be different in olfactory epithelia and brain neurons. OR gene expression is altered in several neurodegenerative diseases including Parkinson's disease (PD), Alzheimer's disease (AD), progressive supranuclear palsy (PSP) and sporadic Creutzfeldt-Jakob disease (sCJD) subtypes MM1 and VV2 with disease-, region- and subtype-specific patterns. Altered gene expression is also observed in the prefrontal cortex in schizophrenia with a major but not total influence of chlorpromazine treatment. Preliminary parallel observations have also shown the presence of taste receptors (TASRs), mainly of the bitter taste family, in the mammalian brain, whose function is not related to taste. TASRs in brain are also abnormally regulated in neurodegenerative diseases. These seminal observations point to the need for further studies on ORs and TASRs chemoreceptors in the mammalian brain.

8.
BMC Genomics ; 15: 729, 2014 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-25164183

RESUMO

BACKGROUND: The mesencephalic dopaminergic (mDA) cell system is composed of two major groups of projecting cells in the Substantia Nigra (SN) (A9 neurons) and the Ventral Tegmental Area (VTA) (A10 cells). Selective degeneration of A9 neurons occurs in Parkinson's disease (PD) while abnormal function of A10 cells has been linked to schizophrenia, attention deficit and addiction. The molecular basis that underlies selective vulnerability of A9 and A10 neurons is presently unknown. RESULTS: By taking advantage of transgenic labeling, laser capture microdissection coupled to nano Cap-Analysis of Gene Expression (nanoCAGE) technology on isolated A9 and A10 cells, we found that a subset of Olfactory Receptors (OR)s is expressed in mDA neurons. Gene expression analysis was integrated with the FANTOM5 Helicos CAGE sequencing datasets, showing the presence of these ORs in selected tissues and brain areas outside of the olfactory epithelium. OR expression in the mesencephalon was validated by RT-PCR and in situ hybridization. By screening 16 potential ligands on 5 mDA ORs recombinantly expressed in an heterologous in vitro system, we identified carvone enantiomers as agonists at Olfr287 and able to evoke an intracellular Ca2+ increase in solitary mDA neurons. ORs were found expressed in human SN and down-regulated in PD post mortem brains. CONCLUSIONS: Our study indicates that mDA neurons express ORs and respond to odor-like molecules providing new opportunities for pharmacological intervention in disease.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Regulação da Expressão Gênica , Mesencéfalo/citologia , Mesencéfalo/metabolismo , Odorantes , Receptores Odorantes/genética , Animais , Linhagem Celular , Análise por Conglomerados , Neurônios Dopaminérgicos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Camundongos , Especificidade de Órgãos/genética , Doença de Parkinson/genética , Doença de Parkinson/metabolismo , Receptores Odorantes/metabolismo , Proteínas Recombinantes , Substância Negra/metabolismo , Transcrição Gênica
9.
Proc Natl Acad Sci U S A ; 108(44): 17979-84, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22011578

RESUMO

Huntington disease (HD) is a neurodegenerative disorder caused by a CAG repeat expansion in the gene coding for huntingtin protein. Several mechanisms have been proposed by which mutant huntingtin (mHtt) may trigger striatal neurodegeneration, including mitochondrial dysfunction, oxidative stress, and apoptosis. Furthermore, mHtt induces DNA damage and activates a stress response. In this context, p53 plays a crucial role in mediating mHtt toxic effects. Here we have dissected the pathway of p53 activation by mHtt in human neuronal cells and in HD mice, with the aim of highlighting critical nodes that may be pharmacologically manipulated for therapeutic intervention. We demonstrate that expression of mHtt causes increased phosphorylation of p53 on Ser46, leading to its interaction with phosphorylation-dependent prolyl isomerase Pin1 and consequent dissociation from the apoptosis inhibitor iASPP, thereby inducing the expression of apoptotic target genes. Inhibition of Ser46 phosphorylation by targeting homeodomain-interacting protein kinase 2 (HIPK2), PKCδ, or ataxia telangiectasia mutated kinase, as well as inhibition of the prolyl isomerase Pin1, prevents mHtt-dependent apoptosis of neuronal cells. These results provide a rationale for the use of small-molecule inhibitors of stress-responsive protein kinases and Pin1 as a potential therapeutic strategy for HD treatment.


Assuntos
Apoptose/fisiologia , Mutação , Proteínas do Tecido Nervoso/metabolismo , Proteínas Nucleares/metabolismo , Peptidilprolil Isomerase/metabolismo , Serina/metabolismo , Proteína Supressora de Tumor p53/fisiologia , Animais , Dano ao DNA , Humanos , Proteína Huntingtina , Isomerismo , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas Nucleares/genética , Estresse Oxidativo , Fosforilação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...