Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Genome Res ; 32(10): 1892-1905, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36100434

RESUMO

Emerging spatial profiling technology has enabled high-plex molecular profiling in biological tissues, preserving the spatial and morphological context of gene expression. Here, we describe expanding the chemistry for the Digital Spatial Profiling platform to quantify whole transcriptomes in human and mouse tissues using a wide range of spatial profiling strategies and sample types. We designed multiplexed in situ hybridization probes targeting the protein-coding genes of the human and mouse transcriptomes, referred to as the human or mouse Whole Transcriptome Atlas (WTA). Human and mouse WTAs were validated in cell lines for concordance with orthogonal gene expression profiling methods in regions ranging from ∼10-500 cells. By benchmarking against bulk RNA-seq and fluorescence in situ hybridization, we show robust transcript detection down to ∼100 transcripts per region. To assess the performance of WTA across tissue and sample types, we applied WTA to biological questions in cancer, molecular pathology, and developmental biology. Spatial profiling with WTA detected expected gene expression differences between tumor and tumor microenvironment, identified disease-specific gene expression heterogeneity in histological structures of the human kidney, and comprehensively mapped transcriptional programs in anatomical substructures of nine organs in the developing mouse embryo. Digital Spatial Profiling technology with the WTA assays provides a flexible method for spatial whole transcriptome profiling applicable to diverse tissue types and biological contexts.


Assuntos
Perfilação da Expressão Gênica , Neoplasias , Humanos , Animais , Camundongos , Hibridização in Situ Fluorescente/métodos , Perfilação da Expressão Gênica/métodos , Transcriptoma , Microambiente Tumoral
2.
Nat Commun ; 13(1): 385, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-35046414

RESUMO

Mapping cell types across a tissue is a central concern of spatial biology, but cell type abundance is difficult to extract from spatial gene expression data. We introduce SpatialDecon, an algorithm for quantifying cell populations defined by single cell sequencing within the regions of spatial gene expression studies. SpatialDecon incorporates several advancements in gene expression deconvolution. We propose an algorithm harnessing log-normal regression and modelling background, outperforming classical least-squares methods. We compile cell profile matrices for 75 tissue types. We identify genes whose minimal expression by cancer cells makes them suitable for immune deconvolution in tumors. Using lung tumors, we create a dataset for benchmarking deconvolution methods against marker proteins. SpatialDecon is a simple and flexible tool for mapping cell types in spatial gene expression studies. It obtains cell abundance estimates that are spatially resolved, granular, and paired with highly multiplexed gene expression data.


Assuntos
Algoritmos , Células/metabolismo , Transcriptoma/genética , Linhagem Celular Tumoral , Células HEK293 , Humanos , Análise dos Mínimos Quadrados , Neoplasias/genética , Neoplasias/imunologia , Análise de Regressão , Microambiente Tumoral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...