Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 278(8): 1244-51, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21294845

RESUMO

Calix[4]arenes bearing two or four methylenebisphosphonic acid groups at the macrocyclic upper rim have been studied with respect to their effects on fibrin polymerization. The most potent inhibitor proved to be calix[4]arene tetrakis-methylene-bis-phosphonic acid (C-192), in which case the maximum rate of fibrin polymerization in the fibrinogen + thrombin reaction decreased by 50% at concentrations of 0.52 × 10(-6) M (IC(50)). At this concentration, the molar ratio of the compound to fibrinogen was 1.7 : 1. For the case of desAABB fibrin polymerization, the IC(50) was 1.26 × 10(-6) M at a molar ratio of C-192 to fibrin monomer of 4 : 1. Dipropoxycalix[4]arene bis-methylene-bis-phosphonic acid (C-98) inhibited fibrin desAABB polymerization with an IC(50) = 1.31 × 10(-4) M. We hypothesized that C-192 blocks fibrin formation by combining with polymerization site 'A' (Aα17-19), which ordinarily initiates protofibril formation in a 'knob-hole' manner. This suggestion was confirmed by an HPLC assay, which showed a host-guest inclusion complex of C-192 with the synthetic peptide Gly-Pro-Arg-Pro, an analogue of site 'A'. Further confirmation that the inhibitor was acting at the initial step of the reaction was obtained by electron microscopy, with no evidence of protofibril formation being evident. Calixarene C-192 also doubled both the prothrombin time and the activated partial thromboplastin time in normal human blood plasma at concentrations of 7.13 × 10(-5) M and 1.10 × 10(-5) M, respectively. These experiments demonstrate that C-192 is a specific inhibitor of fibrin polymerization and blood coagulation and can be used for the design of a new class of antithrombotic agents.


Assuntos
Calixarenos/farmacologia , Difosfonatos/farmacologia , Fibrina/antagonistas & inibidores , Fibrina/química , Fibrinolíticos/farmacologia , Humanos , Concentração Inibidora 50 , Tempo de Tromboplastina Parcial , Tempo de Protrombina
2.
Acta Biochim Pol ; 50(1): 279-89, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-12673370

RESUMO

Fibrin split product D-dimer (DD) is most probably involved in the development of vascular disorders. At 1.5 microM concentration DD inhibited the incorporation of D-[1-(3)H]glucosamine hydrochloride and [2-(14)C]acetate x Na into pericellular heparan sulphate (HS) of rabbit coronary endothelial cells without affecting other groups of glycosaminoglycans (GAGs). At the same time, DD reduced HS ability to bind antithrombin (AT) and suppressed NO production. The effect of DD on pericellular GAGs was similar to that of N(omega)-methyl-L-arginine, the competitive inhibitor of endothelial NO synthase (eNOS). L-Ascorbic acid, eNOS activator, increased the level of endogenous NO in the DD-treated cells, and restored HS accumulation and antithrombin binding. It is suggested that DD influence on endothelial HS may be mediated by NO production. Another effect of DD, namely, stimulation of plasminogen activator inhibitor-1 (PAI-1) secretion did not depend on the NO level. The decreased HS content, reduced anticoagulant properties of HS, and increased PAI-1 secretion disorganized the endothelial matrix, and promoted fibrin formation and vascular damage. This points to DD as an important factor in the development of vascular disorders.


Assuntos
Anticoagulantes/antagonistas & inibidores , Vasos Coronários/fisiologia , Endotélio Vascular/fisiologia , Produtos de Degradação da Fibrina e do Fibrinogênio/fisiologia , Inibidor 1 de Ativador de Plasminogênio/fisiologia , Animais , Radioisótopos de Carbono , Células Cultivadas , Glucosamina/metabolismo , Glicosaminoglicanos/metabolismo , Inibidor 1 de Ativador de Plasminogênio/metabolismo , Coelhos , Acetato de Sódio/metabolismo , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...