Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cancers (Basel) ; 13(19)2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34638511

RESUMO

The Notch signaling pathway is an evolutionary conserved signal transduction cascade present in almost all tissues and is required for embryonic and postnatal development, as well as for stem cell maintenance, but it is also implicated in tumorigenesis including pancreatic cancer and leukemia. The transcription factor RBPJ forms a coactivator complex in the presence of a Notch signal, whereas it represses Notch target genes in the absence of a Notch stimulus. In the pancreas, a specific paralog of RBPJ, called RBPJL, is expressed and found as part of the heterotrimeric PTF1-complex. However, the function of RBPJL in Notch signaling remains elusive. Using molecular modeling, biochemical and functional assays, as well as single-molecule time-lapse imaging, we show that RBPJL and RBPJ, despite limited sequence homology, possess a high degree of structural similarity. RBPJL is specifically expressed in the exocrine pancreas, whereas it is mostly undetectable in pancreatic tumour cell lines. Importantly, RBPJL is not able to interact with Notch-1 to -4 and it does not support Notch-mediated transactivation. However, RBPJL can bind to canonical RBPJ DNA elements and shows migration dynamics comparable to that of RBPJ in the nuclei of living cells. Importantly, RBPJL is able to interact with SHARP/SPEN, the central corepressor of the Notch pathway. In line with this, RBPJL is able to fully reconstitute transcriptional repression at Notch target genes in cells lacking RBPJ. Together, RBPJL can act as an antagonist of RBPJ, which renders cells unresponsive to the activation of Notch.

2.
Front Cell Dev Biol ; 9: 809962, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087838

RESUMO

The Wilms tumor suppressor gene Wt1 encodes a zinc finger transcription factor, which is highly conserved among vertebrates. It is a key regulator of urogenital development and homeostasis but also plays a role in other organs including the spleen and the heart. More recently additional functions for Wt1 in the mammalian central nervous system have been described. In contrast to mammals, bony fish possess two paralogous Wt1 genes, namely wt1a and wt1b. By performing detailed in situ hybridization analyses during zebrafish development, we discovered new expression domains for wt1a in the dorsal hindbrain, the caudal medulla and the spinal cord. Marker analysis identified wt1a expressing cells of the dorsal hindbrain as ependymal cells of the choroid plexus in the myelencephalic ventricle. The choroid plexus acts as a blood-cerebrospinal fluid barrier and thus is crucial for brain homeostasis. By employing wt1a mutant larvae and a dye accumulation assay with fluorescent tracers we demonstrate that Wt1a is required for proper choroid plexus formation and function. Thus, Wt1a contributes to the barrier properties of the choroid plexus in zebrafish, revealing an unexpected role for Wt1 in the zebrafish brain.

3.
Sci Rep ; 10(1): 1758, 2020 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-32019978

RESUMO

Actions of molecular species, for example binding of transcription factors to chromatin, may comprise several superimposed reaction pathways. The number and the rate constants of such superimposed reactions can in principle be resolved by inverse Laplace transformation of the corresponding distribution of reaction lifetimes. However, current approaches to solve this transformation are challenged by photobleaching-prone fluorescence measurements of lifetime distributions. Here, we present a genuine rate identification method (GRID), which infers the quantity, rates and amplitudes of dissociation processes from fluorescence lifetime distributions using a dense grid of possible decay rates. In contrast to common multi-exponential analysis of lifetime distributions, GRID is able to distinguish between broad and narrow clusters of decay rates. We validate GRID by simulations and apply it to CDX2-chromatin interactions measured by live cell single molecule fluorescence microscopy. GRID reveals well-separated narrow decay rate clusters of CDX2, in part overlooked by multi-exponential analysis. We discuss the amplitudes of the decay rate spectrum in terms of frequency of observed events and occupation probability of reaction states. We further demonstrate that a narrow decay rate cluster is compatible with a common model of TF sliding on DNA.


Assuntos
Microscopia de Fluorescência/métodos , Espectrometria de Fluorescência/métodos , Animais , Fator de Transcrição CDX2/metabolismo , Linhagem Celular , Cromatina/metabolismo , DNA/metabolismo , Fluorescência , Cinética , Camundongos , Células NIH 3T3 , Probabilidade
4.
Cell Rep ; 28(5): 1296-1306.e6, 2019 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-31365871

RESUMO

Organ regeneration is preceded by the recruitment of innate immune cells, which play an active role during repair and regrowth. Here, we studied macrophage subtypes during organ regeneration in the zebrafish, an animal model with a high regenerative capacity. We identified a macrophage subpopulation expressing Wilms tumor 1b (wt1b), which accumulates within regenerating tissues. This wt1b+ macrophage population exhibited an overall pro-regenerative gene expression profile and different migratory behavior compared to the remainder of the macrophages. Functional studies showed that wt1b regulates macrophage migration and retention at the injury area. Furthermore, wt1b-null mutant zebrafish presented signs of impaired macrophage differentiation, delayed fin growth upon caudal fin amputation, and reduced cardiomyocyte proliferation following cardiac injury that correlated with altered macrophage recruitment to the regenerating areas. We describe a pro-regenerative macrophage subtype in the zebrafish and a role for wt1b in organ regeneration.


Assuntos
Nadadeiras de Animais/fisiologia , Coração/fisiologia , Macrófagos/metabolismo , Regeneração , Proteínas WT1/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Macrófagos/citologia , Proteínas WT1/genética , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
5.
Dev Dyn ; 248(9): 866-881, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31290212

RESUMO

BACKGROUND: The X-chromosomally linked gene WTX is a human disease gene and a member of the AMER family. Mutations in WTX are found in Wilms tumor, a form of pediatric kidney cancer and in patients suffering from OSCS (Osteopathia striata with cranial sclerosis), a sclerosing bone disorder. Functional data suggest WTX to be an inhibitor of the Wnt/ß-catenin signaling pathway. Deletion of Wtx in mouse leads to perinatal death, impeding the analysis of its physiological role. RESULTS: To gain insights into the function of Wtx in development and homeostasis we have used zebrafish as a model and performed both knockdown and knockout studies using morpholinos and transcription activator-like effector nucleases (TALENs), respectively. Wtx knockdown led to increased Wnt activity and embryonic dorsalization. Also, wtx mutants showed a transient upregulation of Wnt target genes in the context of caudal fin regeneration. Surprisingly, however, wtx as well as wtx/amer2/amer3 triple mutants developed normally, were fertile and did not show any anomalies in organ maintenance. CONCLUSIONS: Our data show that members of the zebrafish wtx/amer gene family, while sharing a partially overlapping expression pattern do not compensate for each other. This observation demonstrates a remarkable robustness during development and regeneration in zebrafish.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Desenvolvimento Embrionário , Homeostase , Proteínas de Membrana/fisiologia , Proteínas Nucleares/fisiologia , Via de Sinalização Wnt/efeitos dos fármacos , Proteínas de Peixe-Zebra/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Embrião não Mamífero , Proteínas de Membrana/genética , Proteínas Mutantes/farmacologia , Proteínas Nucleares/genética , Regeneração , Peixe-Zebra , Proteínas de Peixe-Zebra/genética
6.
J Struct Biol ; 193(3): 157-161, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26780475

RESUMO

Septins are a conserved family of GTP-binding proteins that assemble into a highly ordered array of filaments at the mother bud neck in Saccharomyces cerevisiae cells. Many molecular functions and mechanisms of the septins in S. cerevisiae were already uncovered. However, structural information is only available from modeling the crystallized subunits of the human septins into the EM cryomicroscopy data of the yeast hetero-octameric septin rod. Octameric rods are the building block of septin filaments in yeast. We present here the first crystal structure of Cdc11, the terminal subunit of the octameric rod and discuss its structure in relation to its human homologues. Size exclusion chromatography analysis revealed that Cdc11 forms homodimers through its C-terminal coiled coil tail.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas do Citoesqueleto/química , Proteínas de Ligação ao GTP/química , Proteínas de Saccharomyces cerevisiae/química , Septinas/química , Microscopia Crioeletrônica , Cristalografia por Raios X , Guanosina Trifosfato/química , Humanos , Ligação Proteica , Conformação Proteica , Multimerização Proteica , Saccharomyces cerevisiae/química , Septinas/metabolismo
7.
Mol Cell Endocrinol ; 352(1-2): 46-56, 2012 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-21784131

RESUMO

Androgens have an essential role in inducing the genetic program for masculinization during development. Androgens mediate their effect through the androgen receptor (AR), a ligand-controlled transcription factor and regulator of rapid signaling. Inactivated AR results in complete feminization. Androgens are also essential in later life for reproduction, behavior, muscle development, breast, and prostate growth. In general, androgens inhibit breast and promote prostate growth. In the latter context the AR is a major drug target. On the one hand, many insights have been obtained how the AR mediates gene activation on a molecular level. Gene activation is mediated by a battery of factors including coactivators, chromatin remodeling complex proteins and transcription factors which either directly or indirectly interact with the AR at DNA binding sites. On the other hand, there are important AR target genes that are repressed by androgen-bound AR. However, the underlying molecular mechanisms are poorly understood although genes repressed by AR are key factors involved in cell proliferation and invasion. Here, we summarize molecular mechanisms of AR-mediated gene repression, thereby differentiating between direct and indirect DNA/chromatin recruitment and between genomic and non-genomic effects.


Assuntos
Regulação da Expressão Gênica , Receptores Androgênicos/genética , Cromatina , DNA , Humanos , Masculino , Receptores Androgênicos/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...