Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 62(47): e202313606, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37793026

RESUMO

2,5-Diketopiperazines are cyclic dipeptides displaying a wide range of applications. Their enantioselective preparation has now been found possible from the respective racemates by a photochemical deracemization (53 examples, 74 % to quantitative yield, 71-99 % ee). A chiral benzophenone catalyst in concert with irradiation at λ=366 nm enables to establish the configuration at the stereogenic carbon atom C6 at will. If other stereogenic centers are present in the diketopiperazines they remain unaffected and a stereochemical editing is possible at a single position. Consecutive reactions, including the conversion into N-aryl or N-alkyl amino acids or the reduction to piperazines, occur without compromising the newly created stereogenic center. Transient absorption spectroscopy revealed that the benzophenone catalyst processes one enantiomer of the 2,5-diketopiperazines preferentially and enables a reversible hydrogen atom transfer that is responsible for the deracemization process. The remarkably long lifetime of the protonated ketyl radical implies a yet unprecedented mode of action.

2.
Angew Chem Int Ed Engl ; 62(50): e202308241, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37428113

RESUMO

Upon irradiation in the presence of a suitable chiral catalyst, racemic compound mixtures can be converted into enantiomerically pure compounds with the same constitution. The process is called photochemical deracemization and involves the formation of short-lived intermediates. By opening different reaction channels for the forward reaction to the intermediate and for the re-constitution of the chiral molecule, the entropically disfavored process becomes feasible. Since the discovery of the first photochemical deracemization in 2018, the field has been growing rapidly. This review comprehensively covers the research performed in the area and discusses current developments. It is subdivided according to the mode of action and the respective substrate classes. The focus of this review is on the scope of the individual reactions and on a discussion of the mechanistic details underlying the presented reaction.

3.
Angew Chem Int Ed Engl ; 62(30): e202305274, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37212046

RESUMO

Racemic 3-substituted oxindoles were successfully converted into enantiomerically pure or enriched material (up to 99 % ee) upon irradiation at λ=366 nm in the presence of a chiral benzophenone catalyst (10 mol %). The photochemical deracemization process allows predictable editing of the stereogenic center at carbon atom C3. Light energy compensates for the associated loss of entropy and enables the decoupling of potentially reversible reactions, i.e. a hydrogen atom transfer to (photochemical) and from (thermal) the carbonyl group of the catalyst. The major enantiomer is continuously enriched in several catalytic cycles. The obtained oxindoles were shown to be valuable intermediates for further transformations, which proceeded with complete retention at the stereogenic center.

4.
J Am Chem Soc ; 145(4): 2354-2363, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36660908

RESUMO

Upon irradiation in the presence of a chiral benzophenone catalyst (5 mol %), a racemic mixture of a given chiral imidazolidine-2,4-dione (hydantoin) can be converted almost quantitatively into the same compound with high enantiomeric excess (80-99% ee). The mechanism of this photochemical deracemization reaction was elucidated by a suite of mechanistic experiments. It was corroborated by nuclear magnetic resonance titration that the catalyst binds the two enantiomers by two-point hydrogen bonding. In one of the diastereomeric complexes, the hydrogen atom at the stereogenic carbon atom is ideally positioned for hydrogen atom transfer (HAT) to the photoexcited benzophenone. Detection of the protonated ketyl radical by transient absorption revealed hydrogen abstraction to occur from only one but not from the other hydantoin enantiomer. Quantum chemical calculations allowed us to visualize the HAT within this complex and, more importantly, showed that the back HAT does not occur to the carbon atom of the hydantoin radical but to its oxygen atom. The achiral enol formed in this process could be directly monitored by its characteristic transient absorption signal at λ ≅ 330 nm. Subsequent tautomerization leads to both hydantoin enantiomers, but only one of them returns to the catalytic cycle, thus leading to an enrichment of the other enantiomer. The data are fully consistent with deuterium labeling experiments and deliver a detailed picture of a synthetically useful photochemical deracemization reaction.

5.
Angew Chem Int Ed Engl ; 61(18): e202200555, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35213774

RESUMO

The photochemical synthesis of yet unknown 2-oxospiro[azetidine-3,3'-indolines] (17 examples, 80-95 % yield), 2,4-dioxospiro[azetidine-3,3'-indolines] (eight examples, 87-97 % yield), and 1-oxo-1,3-dihydrospiro[indene-2,3'-indolines] (17 examples, 85-97 % yield) is described. Starting from readily accessible 3-substituted indoles, a dearomatization of the indole core was accomplished upon irradiation at λ=420 nm in the presence of thioxanthen-9-one (10 mol%) as the sensitizer. Based on mechanistic evidence (triplet energy determination, deuteration experiments, by-product analysis) it is proposed that the reaction proceeds by energy transfer via a 1,4- or 1,5-diradical intermediate. The latter intermediates are formed by excited state hydrogen atom transfer from suitable alkyl groups within the C3 substituent to the indole C2 carbon atom. Subsequent ring closure proceeds with pronounced diastereoselectivity to generate a 4- or 5-membered spirocyclic dearomatized product with several options for further functionalization.


Assuntos
Hidrogênio , Luz , Carbono , Ciclização , Indóis
6.
Chem Rev ; 122(2): 1626-1653, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-34227803

RESUMO

For molecules with a singlet ground state, the population of triplet states is mainly possible (a) by direct excitation and subsequent intersystem crossing or (b) by energy transfer from an appropriate sensitizer. The latter scenario enables a catalytic photochemical reaction in which the sensitizer adopts the role of a catalyst undergoing several cycles of photon absorption and subsequent energy transfer to the substrate. If the product molecule of a triplet-sensitized process is chiral, this process can proceed enantioselectively upon judicious choice of a chiral triplet sensitizer. An enantioselective reaction can also occur in a dual catalytic approach in which, apart from an achiral sensitizer, a second chiral catalyst activates the substrate toward sensitization. Although the idea of enantioselective photochemical reactions via triplet intermediates has been pursued for more than 50 years, notable selectivities exceeding 90% enantiomeric excess (ee) have only been realized in the past decade. This review attempts to provide a comprehensive survey on the various photochemical reactions which were rendered enantioselective by triplet sensitization.


Assuntos
Estereoisomerismo , Catálise , Transferência de Energia
7.
J Am Chem Soc ; 143(50): 21241-21245, 2021 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-34902253

RESUMO

A photochemical deracemization of 5-substituted 3-phenylimidazolidine-2,4-diones (hydantoins) is reported (27 examples, 69%-quant., 80-99% ee). The reaction is catalyzed by a chiral diarylketone which displays a two-point hydrogen bonding site. Mechanistic evidence (DFT calculations, radical clock experiments, H/D labeling) suggests the reaction to occur by selective hydrogen atom transfer (HAT). Upon hydrogen binding, one substrate enantiomer displays the hydrogen atom at the stereogenic center to the photoexcited catalyst allowing for a HAT from the substrate and eventually for its conversion into the product enantiomer. The product enantiomer is not processed by the catalyst and is thus enriched in the photostationary state.

8.
J Am Chem Soc ; 143(29): 11209-11217, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-34279085

RESUMO

The photochemical deracemization of 2,4-disubstituted 2,3-butadienamides (allene amides) was investigated both experimentally and theoretically. The reaction was catalyzed by a thioxanthone which is covalently linked to a chiral 1,5,7-trimethyl-3-azabicyclo[3.3.1]nonan-2-one skeleton providing a U-shaped arrangement of the sensitizing unit relative to a potential hydrogen-bonding site. Upon irradiation at λ = 420 nm in the presence of the sensitizer (2.5 mol %), the amides reached at -10 °C a photostationary state in which one enantiomer prevailed. The enantioenriched allene amides (70-93% ee) were isolated in 74% to quantitative yield (19 examples). Based on luminescence data and DFT calculations, energy transfer from the thioxanthone to the allene amides is thermodynamically feasible, and the achiral triplet allene intermediate was structurally characterized. Hydrogen bonding of the amide enantiomers to the sensitizer was monitored by NMR titration. The experimental association constants (Ka) were similar (59.8 vs 25.7 L·mol-1). DFT calculations, however, revealed a significant difference in the binding properties of the two enantiomers. The major product enantiomer exhibits a noncovalent dispersion interaction of its arylmethyl group to the external benzene ring of the thioxanthone, thus moving away the allene from the carbonyl chromophore. The minor enantiomer displays a CH-π interaction of the hydrogen atom at the terminal allene carbon atom to the same benzene ring, thus forcing the allene into close proximity to the chromophore. The binding behavior explains the observed enantioselectivity which, as corroborated by additional calculations, is due to a rapid triplet energy transfer within the substrate-catalyst complex of the minor enantiomer.

9.
Angew Chem Int Ed Engl ; 60(5): 2684-2688, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33084097

RESUMO

3-Substituted quinoxalin-2(1H)-ones and various aryl-substituted or tethered olefins underwent an enantioselective, inter- or intramolecular aza Paternò-Büchi reaction upon irradiation at λ=420 nm in the presence of a chiral sensitizer (10 mol %). For the intermolecular reaction with 1-arylethenes as olefin components, the scope of the reaction was studied (14 examples, 50-99 % yield, 86-98 % ee). The absolute and relative configuration of the products were elucidated by single-crystal X-ray crystallography. The reaction is suggested to occur by triplet energy transfer in a hydrogen-bonded 1:1 complex between the imine substrate and the catalyst. The intramolecular cycloaddition, consecutive reactions of the product azetidines, and an alternative reaction mode of quinoxalinones were investigated in preliminary experiments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...