Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Cell Environ ; 46(5): 1540-1561, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36760139

RESUMO

A photochemical model of photosynthetic electron transport (PET) is needed to integrate photophysics, photochemistry, and biochemistry to determine redox conditions of electron carriers and enzymes for plant stress assessment and mechanistically link sun-induced chlorophyll fluorescence to carbon assimilation for remotely sensing photosynthesis. Towards this goal, we derived photochemical equations governing the states and redox reactions of complexes and electron carriers along the PET chain. These equations allow the redox conditions of the mobile plastoquinone pool and the cytochrome b6 f complex (Cyt) to be inferred with typical fluorometry. The equations agreed well with fluorometry measurements from diverse C3 /C4 species across environments in the relationship between the PET rate and fraction of open photosystem II reaction centres. We found the oxidation of plastoquinol by Cyt is the bottleneck of PET, and genetically improving the oxidation of plastoquinol by Cyt may enhance the efficiency of PET and photosynthesis across species. Redox reactions and photochemical and biochemical interactions are highly redundant in their complex controls of PET. Although individual reaction rate constants cannot be resolved, they appear in parameter groups which can be collectively inferred with fluorometry measurements for broad applications. The new photochemical model developed enables advances in different fronts of photosynthesis research.


Assuntos
Clorofila , Complexo de Proteína do Fotossistema I , Transporte de Elétrons , Complexo de Proteína do Fotossistema I/metabolismo , Clorofila/química , Fotossíntese , Oxirredução , Plastoquinona , Complexo Citocromos b6f/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo
2.
Front Plant Sci ; 13: 1025477, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36438083

RESUMO

Solanum lycopersicum L. cv. 'Microtom' (MicroTom) is a model organism with a relatively rapid life cycle, and wide library of genetic mutants available to study different aspects of plant development. Despite its small stature, conventional MicroTom research often requires expensive growth cabinets and/or expansive greenhouse space, limiting the number of experimental and control replications needed for experiments, and can render plants susceptible to pests and disease. Thus, alternative experimental approaches must be devised to reduce the footprint of experimental units and limit the occurrence problematic confounding variables. Here, tissue culture is presented as a powerful option for MicroTom research that can quell the complications associated with conventional MicroTom research methods. A previously established, non-invasive, analytical tissue culture system is used to compare in vitro and conventionally produced MicroTom by assessing photosynthesis, respiration, diurnal carbon gain, and fruit pigments. To our knowledge, this is the first publication that measures in vitro MicroTom fruit pigments and compares diurnal photosynthetic/respiration responses to abiotic factors between in vitro and ex vitro MicroTom. Comparable trends would validate tissue culture as a new benchmark method in MicroTom research, as it is like Arabidopsis, allowing replicable, statistically valid, high throughput genotyping and selective phenotyping experiments. Combining the model plant MicroTom with advanced tissue culture methods makes it possible to study bonsai-style MicroTom responses to light, temperature, and atmospheric stimuli in the absence of confounding abiotic stress factors that would otherwise be unachievable using conventional methods.

3.
New Phytol ; 236(2): 319-329, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35832001

RESUMO

In higher plants, photosystems II and I are found in grana stacks and unstacked stroma lamellae, respectively. To connect them, electron carriers negotiate tortuous multi-media paths and are subject to macromolecular blocking. Why does evolution select an apparently unnecessary, inefficient bipartition? Here we systematically explain this perplexing phenomenon. We propose that grana stacks, acting like bellows in accordions, increase the degree of ultrastructural control on photosynthesis through thylakoid swelling/shrinking induced by osmotic water fluxes. This control coordinates with variations in stomatal conductance and the turgor of guard cells, which act like an accordion's air button. Thylakoid ultrastructural dynamics regulate macromolecular blocking/collision probability, direct diffusional pathlengths, division of function of Cytochrome b6 f complex between linear and cyclic electron transport, luminal pH via osmotic water fluxes, and the separation of pH dynamics between granal and lamellar lumens in response to environmental variations. With the two functionally asymmetrical photosystems located distantly from each other, the ultrastructural control, nonphotochemical quenching, and carbon-reaction feedbacks maximally cooperate to balance electron transport with gas exchange, provide homeostasis in fluctuating light environments, and protect photosystems in drought. Grana stacks represent a dry/high irradiance adaptation of photosynthetic machinery to improve fitness in challenging land environments. Our theory unifies many well-known but seemingly unconnected phenomena of thylakoid structure and function in higher plants.


Assuntos
Embriófitas , Tilacoides , Carbono/metabolismo , Citocromos/metabolismo , Embriófitas/metabolismo , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Água/metabolismo
4.
Biology (Basel) ; 11(5)2022 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-35625457

RESUMO

Supplemental sugar additives for plant tissue culture cause mixotrophic growth, complicating carbohydrate metabolism and photosynthetic relationships. A unique platform to test and model the photosynthetic proficiency and biomass accumulation of micropropagated plantlets was introduced and applied to Cannabis sativa L. (cannabis), an emerging crop with high economic interest. Conventional in vitro systems can hinder the photoautotrophic ability of plantlets due to low light intensity, low vapor pressure deficit, and limited CO2 availability. Though exogenous sucrose is routinely added to improve in vitro growth despite reduced photosynthetic capacity, reliance on sugar as a carbon source can also trigger negative responses that are species-dependent. By increasing photosynthetic activity in vitro, these negative consequences can likely be mitigated, facilitating the production of superior specimens with enhanced survivability. The presented methods use an open-flow/force-ventilated gas exchange system and infrared gas analysis to measure the impact of [CO2], light, and additional factors on in vitro photosynthesis. This system can be used to answer previously overlooked questions regarding the nature of in vitro plant physiology to enhance plant tissue culture and the overall understanding of in vitro processes, facilitating new research methods and idealized protocols for commercial tissue culture.

5.
Plants (Basel) ; 10(8)2021 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-34451719

RESUMO

Plant biomass and yield are largely dictated by the total amount of light intercepted by the plant (daily light integral (DLI)-intensity × photoperiod). It is more economical to supply the desired DLI with a long photoperiod of low-intensity light because it uses fewer light fixtures, reducing capital costs. Furthermore, heat released by the light fixtures under a long photoperiod extended well into the night helps to meet the heating requirement during the night. However, extending the photoperiod beyond a critical length (>17 h) may be detrimental to production and lead to leaf chlorosis and a reduction in leaf growth and plant vigor in greenhouse tomato production. It is known that red light can increase leaf growth and plant vigor, as can certain rootstocks, which could compensate for the loss in plant vigor and leaf growth from long photoperiods. Therefore, this study investigated the response of tomatoes grafted onto different rootstocks to a long photoperiod of lighting under red and other light spectra. Tomato plants 'Trovanzo' grafted onto 'Emperator' or 'Kaiser' were subjected to two spectral compositions-100% red or a mix of red (75%), blue (20%), and green (5%) light for 17 h or 23 h. The four treatments supplied similar DLI. Leaf chlorosis appeared in all plants under 23 h lighting regardless of spectral compositions between 20 and 54 days into the treatment. The yield for 23 h mixed lighting treatment was lower than both 17 h lighting treatments. However, the 23 h red lighting treatment resulted in less leaf chlorosis and the plants grafted onto 'Emperator' produced a similar yield as both 17 h lighting treatments. Therefore, both spectral compositions and rootstocks affected the response of greenhouse tomatoes to long photoperiods of lighting. With red light and proper rootstock, the negative yield impact from long photoperiod lighting can be eliminated.

6.
Plants (Basel) ; 10(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671143

RESUMO

Continuous lighting (CL, 24 h) can reduce the light intensity/light capital costs used to achieve the desired amount of light for year-round greenhouse vegetable production in comparison to short photoperiods of lighting. However, growth under CL has led to leaf injury characterized by chlorosis unless a thermoperiod or alternating light spectrum during CL is used. To date, there is no literature relating to how cucumbers (Cucumissativus) respond to CL with LEDs in a full production cycle. Here, we evaluated a mini-cucumber cv. "Bonwell" grown under 4 supplemental lighting strategies: Treatment 1 (T1, the control) was 16 h of combined red light and blue light followed by 8 h of darkness. Treatment 2 (T2) had continuous (24 h) red light and blue light. Treatment 3 (T3) was 16 h of red light followed by 8 h of blue light. Treatment 4 (T4) was 12 h of red light followed by 12 h of blue light. All treatments had a supplemental daily light integral (DLI) of ~10 mol m-2 d-1. Plants from all treatments showed similar growth characteristics throughout the production cycle. However, plants grown under all three CL treatments had higher chlorophyll concentrations from leaves at the top of the canopy when compared to T1. The overall photosynthetic capacity, light use efficiency, and photosynthetic parameters related to light response curves (i.e., dark respiration, light compensation point, quantum yield, and photosynthetic maximum), as well as the quantum yield of photosystem II (PSII; Fv/Fm) were similar among the treatments. Plants grown under all CL treatments produced a similar yield compared to the control treatment (T1). These results indicate that mini-cucumber cv. "Bonwell" is tolerant to CL, and CL is a viable and economical lighting strategy for mini-cucumber production.

7.
Front Nutr ; 7: 77, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32582753

RESUMO

This review extensively discusses various socio environmental factors affecting eating behavior of the general public within Canada including the development and implementation of national policies. A framework representing the determinants of healthy eating can be grouped into four categories i.e., the individual determinants, the economic environment, the social environment and the physical environment. This framework allowed for addressing food insecurity and social economic ecosystem of Canadians. Lastly, we investigate the role in which biotechnology plays in improving food security and addresses the significant impact biotechnology has contributed toward on agriculture and the food market. Overall, this review using such sources as Web of Science, Pub Med and Scopus provides significant contribution toward understanding the social economic environment and eating behavior of people living in Canada. In conclusion, this has led to identify a research gap as there is a significant need to address the development and implementation of policies in the food and nutrition environment.

8.
Front Plant Sci ; 10: 1114, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31572419

RESUMO

Plant biomass is largely dictated by the total amount of light intercepted by the plant [daily light integral (DLI) - intensity × photoperiod]. Continuous light (CL, 24 h lighting) has been hypothesized to increase plant biomass and yield if CL does not cause any injury. However, lighting longer than 18 h causes leaf injury in tomato characterized by interveinal chlorosis and yield is no longer increased with further photoperiod extension in tomatoes. Our previous research indicated the response of cucumbers to long photoperiod of lighting varies with light spectrum. Therefore, we set out to examine greenhouse tomato production under supplemental CL using an alternating red (200 µmol m-2 s-1, 06:00-18:00) and blue (50 µmol m-2 s-1, 18:00-06:00) spectrum in comparison to a 12 h supplemental lighting treatment with a red/blue mixture (200 µmol m-2 s-1 red + 50 µmol m-2 s-1 blue, 06:00-18:00) at the same DLI. Our results indicate that tomato plants grown under supplemental CL using the red and blue alternating spectrum were injury-free. Furthermore, parameters related to photosynthetic performance (i.e., Pnmax, quantum yield, and Fv/Fm) were similar between CL and 12 h lighting treatments indicating no detrimental effect of growth under CL. Leaves under CL produced higher net carbon exchange rates (NCER) during the subjective night period (18:00-06:00) compared to plants grown under 12 h lighting. Notably, 53 days into the treatment, leaves grown under CL produced positive NCER values (photosynthesis) during the subjective night period, a period typically associated with respiration. At 53 days into the growth cycle, it is estimated that leaves under CL will accumulate approximately 800 mg C m-2 more than leaves under 12 h lighting over a 24 h period. Leaves grown under CL also displayed similar diurnal patterns in carbohydrates (glucose, fructose, sucrose, and starch) as leaves under 12 h lighting indicating no adverse effects on carbohydrate metabolism under CL. Taken together, this study provides evidence that red and blue spectral alternations during CL allow for injury-free tomato production. We suggest that an alternating spectrum during CL may alleviate the injury typically associated with CL production in tomato.

9.
IEEE/ACM Trans Comput Biol Bioinform ; 16(6): 2009-2022, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-29993836

RESUMO

Machine vision for plant phenotyping is an emerging research area for producing high throughput in agriculture and crop science applications. Since 2D based approaches have their inherent limitations, 3D plant analysis is becoming state of the art for current phenotyping technologies. We present an automated system for analyzing plant growth in indoor conditions. A gantry robot system is used to perform scanning tasks in an automated manner throughout the lifetime of the plant. A 3D laser scanner mounted as the robot's payload captures the surface point cloud data of the plant from multiple views. The plant is monitored from the vegetative to reproductive stages in light/dark cycles inside a controllable growth chamber. An efficient 3D reconstruction algorithm is used, by which multiple scans are aligned together to obtain a 3D mesh of the plant, followed by surface area and volume computations. The whole system, including the programmable growth chamber, robot, scanner, data transfer, and analysis is fully automated in such a way that a naive user can, in theory, start the system with a mouse click and get back the growth analysis results at the end of the lifetime of the plant with no intermediate intervention. As evidence of its functionality, we show and analyze quantitative results of the rhythmic growth patterns of the dicot Arabidopsis thaliana (L.), and the monocot barley (Hordeum vulgare L.) plants under their diurnal light/dark cycles.


Assuntos
Arabidopsis/genética , Hordeum/genética , Imageamento Tridimensional/métodos , Folhas de Planta/metabolismo , Agricultura , Algoritmos , Automação , Análise por Conglomerados , Biologia Computacional/métodos , Aprendizado de Máquina , Fenótipo , Robótica , Software
10.
PLoS One ; 13(10): e0205861, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30335803

RESUMO

In controlled environment plant production facilities, elevating either light or CO2 levels generally has led to increased biomass and yield due to enhanced canopy photosynthesis. Today, advancements in light-emitting diodes (LEDs) have made this technology a viable option for both supplementary lighting in greenhouses and a sole lighting source in controlled environment chambers. Our study used tomato plants grown under both ambient CO2 (AC) and elevated CO2 (EC) conditions then exposed them to various CO2 and lighting treatments during both whole plant and leaf level measurements. Plants grown under EC reached the first flower developmental stage 8 days sooner and were approximately 15cm taller than those grown under AC. However, under AC plants had more leaf area while their dry weights were similar. Of note, under EC chlorophyll a and b were lower, as were carotenoids per unit leaf area. Whole plant analyses, under all CO2 challenges, showed that plants exposed to high-pressure sodium (HPS), red-blue LED, and red-white LED had similar photosynthesis, respiration, and daily carbon gain. Under different light qualities, day-time transpiration rates were similar among CO2 conditions. Day-time water-use efficiency (WUE) was higher in plants grown and exposed to EC. Similarly, WUE of plants grown under AC but exposed to short-term elevated CO2 conditions was higher than those grown and tested under AC during all light treatments. Under all CO2 conditions, plants exposed to red-white and red-blue LEDs had lower WUE than those exposed to HPS lighting. Assessing alterations due to CO2 and light quality on a whole plant basis, not merely on an individual leaf basis, furthers our understanding of the interactions between these two parameters during controlled environment production. Principle component analyses of both whole plant and leaf data indicates that increasing CO2 supply has a more dramatic effect on photosynthesis and WUE than on transpiration.


Assuntos
Dióxido de Carbono/farmacologia , Iluminação/métodos , Fotossíntese/efeitos dos fármacos , Folhas de Planta/efeitos dos fármacos , Transpiração Vegetal/efeitos dos fármacos , Solanum lycopersicum/efeitos dos fármacos , Dióxido de Carbono/metabolismo , Carotenoides/biossíntese , Clorofila A/biossíntese , Ambiente Controlado , Luz , Solanum lycopersicum/fisiologia , Solanum lycopersicum/efeitos da radiação , Fotossíntese/fisiologia , Fotossíntese/efeitos da radiação , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Transpiração Vegetal/fisiologia , Transpiração Vegetal/efeitos da radiação , Análise de Componente Principal , Água/metabolismo
11.
Front Plant Sci ; 9: 756, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29915612

RESUMO

Translocation of assimilates is a fundamental process involving carbon and water balance affecting source/sink relationships. Diurnal patterns of CO2 exchange, translocation (carbon export), and transpiration of an intact tomato source leaf were determined during 14CO2 steady-state labeling under different wavelengths at three pre-set photosynthetic rates. Daily patterns showed that photosynthesis and export were supported by all wavelengths of light tested including orange and green. Export in the light, under all wavelengths was always higher than that at night. Export in the light varied from 65-83% of the total daily carbon fixed, depending on light intensity. Photosynthesis and export were highly correlated under all wavelengths (r = 0.90-0.96). Export as a percentage of photosynthesis (relative export) decreased as photosynthesis increased by increasing light intensity under all wavelengths. These data indicate an upper limit for export under all spectral conditions. Interestingly, only at the medium photosynthetic rate, relative export under the blue and the orange light-emitting diodes (LEDs) were higher than under white and red-white LEDs. Stomatal conductance, transpiration rates, and water-use-efficiency showed similar daily patterns under all wavelengths. Illuminating tomato leaves with different spectral quality resulted in similar carbon export rates, but stomatal conductance and transpiration rates varied due to wavelength specific control of stomatal function. Thus, we caution that the link between transpiration and C-export may be more complex than previously thought. In summary, these data indicate that orange and green LEDs, not simply the traditionally used red and blue LEDs, should be considered and tested when designing lighting systems for optimizing source leaf strength during plant production in controlled environment systems. In addition, knowledge related to the interplay between water and C-movement within a plant and how they are affected by environmental stimuli, is needed to develop a better understanding of source/sink relationships.

12.
Front Plant Sci ; 8: 1076, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28676816

RESUMO

Advancements in light-emitting diode (LED) technology have made them a viable alternative to current lighting systems for both sole and supplemental lighting requirements. Understanding how wavelength specific LED lighting can affect plants is thus an area of great interest. Much research is available on the wavelength specific responses of leaves from multiple crops when exposed to long-term wavelength specific lighting. However, leaf measurements do not always extrapolate linearly to the complexities which are found within a whole plant canopy, namely mutual shading and leaves of different ages. Taken together, both tomato (Solanum lycopersicum) leaves under short-term illumination and lisianthus (Eustoma grandiflorum) and tomato whole plant diurnal patterns of plants acclimated to specific lighting indicate wavelength specific responses of both H2O and CO2 gas exchanges involved in the major growth parameters of a plant. Tomato leaves grown under a white light source indicated an increase in transpiration rate and internal CO2 concentration and a subsequent decrease in water-use-efficiency (WUE) when exposed to a blue LED light source compared to a green LED light source. Interestingly, the maximum photosynthetic rate was observed to be similar. Using plants grown under wavelength specific supplemental lighting in a greenhouse, a decrease in whole plant WUE was seen in both crops under both red-blue (RB) and red-white (RW) LEDs when compared to a high pressure sodium (HPS) light. Whole plant WUE was decreased by 31% under the RB LED treatment for both crops compared to the HPS treatment. Tomato whole plant WUE was decreased by 25% and lisianthus whole plant WUE was decreased by 15% when compared to the HPS treatment when grown under RW LED. The understanding of the effects of wavelength specific lighting on both leaf and whole plant gas exchange has significant implications on basic academic research as well as commercial greenhouse production.

13.
Front Plant Sci ; 7: 95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26904065

RESUMO

Mitochondrial pyruvate dehydrogenase (mtPDH) is a key respiratory enzyme that links glycolysis and the tricarboxylic acid cycle, and it is negatively regulated by mtPDH kinase (mtPDHK). Arabidopsis lines carrying either a constitutive or seed-specific antisense construct for mtPDHK were used to test the hypothesis that alteration of mtPDH activity in a tissue- and dosage-dependent manner will enhance reproductive growth particularly at elevated CO2 (EC) through a combined enhancement of source and sink activities. Constitutive transgenic lines showed increased mtPDH activity in rosette leaves at ambient CO2 (AC) and EC, and in immature seeds at EC. Seed-specific transgenic lines showed enhanced mtPDH activity in immature seeds. A strong relationship existed between seed mtPDH activity and inflorescence initiation at AC, and at EC inflorescence stem growth, silique number and seed harvest index were strongly related to seed mtPDH activity. Leaf photosynthetic rates showed an increase in rosette leaves of transgenic lines at AC and EC that correlated with enhanced inflorescence initiation. Collectively, the data show that mtPDHK plays a key role in regulating sink and source activities in Arabidopsis particularly during the reproductive phase.

14.
Physiol Plant ; 144(2): 169-88, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21883254

RESUMO

The contributions of phenotypic plasticity to photosynthetic performance in winter (cv Musketeer, cv Norstar) and spring (cv SR4A, cv Katepwa) rye (Secale cereale) and wheat (Triticum aestivum) cultivars grown at either 20°C [non-acclimated (NA)] or 5°C [cold acclimated (CA)] were assessed. The 22-40% increase in light-saturated rates of CO2 assimilation in CA vs NA winter cereals were accounted for by phenotypic plasticity as indicated by the dwarf phenotype and increased specific leaf weight. However, phenotypic plasticity could not account for (1) the differential temperature sensitivity of CO2 assimilation and photosynthetic electron transport, (2) the increased efficiency and light-saturated rates of photosynthetic electron transport or (3) the decreased light sensitivity of excitation pressure and non-photochemical quenching between NA and NA winter cultivars. Cold acclimation decreased photosynthetic performance of spring relative to winter cultivars. However, the differences in photosynthetic performances between CA winter and spring cultivars were dependent upon the basis on which photosynthetic performance was expressed. Overexpression of BNCBF17 in Brassica napus generally decreased the low temperature sensitivity (Q10) of CO2 assimilation and photosynthetic electron transport even though the latter had not been exposed to low temperature. Photosynthetic performance in wild type compared to the BNCBF17-overexpressing transgenic B. napus indicated that CBFs/DREBs regulate not only freezing tolerance but also govern plant architecture, leaf anatomy and photosynthetic performance. The apparent positive and negative effects of cold acclimation on photosynthetic performance are discussed in terms of the apparent costs and benefits of phenotypic plasticity, winter survival and reproductive fitness.


Assuntos
Brassica napus/anatomia & histologia , Brassica napus/fisiologia , Fotossíntese , Secale/anatomia & histologia , Secale/fisiologia , Triticum/anatomia & histologia , Triticum/fisiologia , Aclimatação/efeitos dos fármacos , Aclimatação/efeitos da radiação , Biomassa , Brassica napus/genética , Brassica napus/crescimento & desenvolvimento , Dióxido de Carbono/metabolismo , Dióxido de Carbono/farmacologia , Isótopos de Carbono , Clorofila/metabolismo , Clorofila A , Temperatura Baixa , Transporte de Elétrons/efeitos dos fármacos , Transporte de Elétrons/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Luz , Peptídeos/metabolismo , Fenótipo , Fotossíntese/efeitos dos fármacos , Fotossíntese/efeitos da radiação , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/efeitos da radiação , Estômatos de Plantas/efeitos dos fármacos , Estômatos de Plantas/fisiologia , Estômatos de Plantas/efeitos da radiação , Estômatos de Plantas/ultraestrutura , Transpiração Vegetal/efeitos dos fármacos , Transpiração Vegetal/efeitos da radiação , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Estações do Ano , Secale/genética , Secale/crescimento & desenvolvimento , Temperatura , Triticum/genética , Triticum/crescimento & desenvolvimento , Água/fisiologia
15.
J Chem Ecol ; 35(11): 1363-72, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19949840

RESUMO

A study of two related plants (Antirrhinum majus L. and Linaria vulgaris Mill.) containing the same defensive compound (the iridoid glucoside, antirrhinoside) but with reproductive strategies that differ during ontogeny was undertaken. Young leaves are important to plants due to their higher photosynthetic rates and, therefore, should be better protected with higher concentrations of defensive compounds such as antirrhinoside. Declining concentrations of antirrhinoside as leaves aged was found for A. majus but this was generally not the case for L. vulgaris. Concentrations of antirrhinoside in root tissue were low and constant throughout ontogeny for A. majus whereas for L. vulgaris root levels of antirrhinoside were high during the period when vegetative growth is its sole means of reproduction. Antirrhinoside in L. vulgaris roots declined relative to A. majus roots during budding and flowering. During flowering, significantly less antirrhinoside and relative biomass are devoted to L. vulgaris flowers than in A. majus. While these findings are consistent with Optimal Defense Theory (ODT) further work on the distribution of antirrhinoside and the effect of insect herbivory on plant fitness in other related species is needed.


Assuntos
Antirrhinum/metabolismo , Iridoides/análise , Linaria/metabolismo , Estruturas Vegetais/metabolismo , Antirrhinum/fisiologia , Biomassa , Iridoides/metabolismo , Linaria/fisiologia , Reprodução
16.
J Chem Ecol ; 34(5): 591-600, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18414950

RESUMO

The iridoid glucoside, antirrhinoside, is constitutively distributed throughout Antirrhinum majus L. in a manner consistent with its possible role as an allelochemical, but there is no evidence that it has a defensive function with respect to insect herbivory. To address this question, two generalist herbivores, Lymantria dispar L. (gypsy moth) and Trichoplusia ni Hübner (cabbage looper) were chosen for feeding trials on excised whole leaves of A. majus and in artificial diet assays. In leaf excision feeding trials, fourth instar gypsy moth rejected, without sampling, the leaves of A. majus regardless of what node the leaf was excised from. In contrast, fourth instar cabbage looper readily fed on the excised leaves, and antirrhinoside was not found in their bodies or feces (frass) as determined by thin layer and high-pressure liquid chromatography. In the leaf and diet assays, a second major leaf iridoid in A. majus, antirrhide, was found in both cabbage looper and gypsy moth frass. In diet feeding assays, the growth of gypsy moth and cabbage looper were not inhibited by methanol extracts, iridoid fractions, or pure antirrhinoside at concentrations of 0.6% in diet, but cabbage looper growth was enhanced. At an antirrhinoside concentration of 3.3% in diet, gypsy moth growth was reduced, whereas cabbage looper growth again increased significantly relative to the control. It is likely that antirrhinoside functions as defense against herbivory for one generalist insect herbivore but also, at low concentrations, enhances the growth of another.


Assuntos
Glucosídeos/isolamento & purificação , Glucosídeos/farmacologia , Iridoides/isolamento & purificação , Iridoides/farmacologia , Mariposas/fisiologia , Plantago/química , Animais , Cromatografia Líquida de Alta Pressão , Cromatografia em Camada Fina , Comportamento Alimentar , Glucosídeos Iridoides , Folhas de Planta/química
17.
J Agric Food Chem ; 55(20): 8243-50, 2007 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-17803263

RESUMO

Three standard assays for pyruvate gave equivalent measurements of relative pungency for two leek cultivars ( 'Tadorna' and 'Ramona'). Background pyruvate levels varied depending on the assay used, ranging from 0.4 (lactate dehydrogenase) to 1.5 (high-performance liquid chromatography, HPLC) micromol g(-1) fresh weight (FW) on average. The relative pungencies of the two leek cultivars were also compared to total concentrations of the S-alk(en)yl-L-cysteine sulfoxides (RCSOs). The average ratio of EPy to total RCSOs was 10.9, indicating that standard pungency assays underestimate the levels of RCSOs in the tissue. A detailed analysis of 'Tadorna' leaves showed that total RCSO concentrations decreased acropetally. Profiles were composed of (-/+)-methyl-, (-/+)-ethyl-, (+)-propyl-, and (+)-1-propenyl-L-cysteine sulfoxide (MCSO, ECSO, PCSO, and 1-PeCSO, respectively). (+)-PCSO was the most prominent in green (2.4 mg g (-1) FW), yellow (5.5 mg g (-1) FW), and white (3.8 mg g (-1) FW) tissues. The prop(en)yl-L-cysteine sulfoxide derivatives were dominant in tissues that had photosynthetic capacity. The (+)-MCSO levels were high in the bulb (3.6 mg g (-1) FW). Interestingly, detectable levels of (-/+)-ECSO were measured in the leaves ( approximately 0.5 mg g (-1) FW). RCSO profiles of the different tissue regions were similar, but more (+)-PCSO and (+)-1-PeCSO were detected in the bulb. In general, mature upper leaf tissues had lower levels of total RCSOs. Overall, mild extraction methods and a low-temperature HPLC protocol (preferably with long retention times) achieved adequate compound separation and resolution of the diastereomers.


Assuntos
Allium/química , Cisteína/análogos & derivados , Odorantes/análise , Sulfóxidos/análise , Cisteína/análise , Fotossíntese , Folhas de Planta/química , Ácido Pirúvico/análise
18.
J Chem Ecol ; 33(4): 731-47, 2007 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-17334922

RESUMO

Two iridoid glucosides isolated from leaves of Antirrhinum majus L. were identified as the known compounds antirrhinoside and antirrhide. Plants grown hydroponically demonstrated that antirrhinoside is present in all plant organs including the roots. In contrast, antirrhide is found only in leaves. Furthermore, both iridoids were identified in the main stem axillary leaves and leaves on the lateral branches. The highest concentrations of antirrhinoside were found in the main and lateral stems as well as the buds and flowers. As leaves age, for both cultivars, the levels of antirrhinoside drop significantly, and there is a corresponding increase in antirrhide. In spite of the different genetic backgrounds of the two cultivars, the overall distribution of the iridoids was similar during vegetative and flowering development. Radiolabeling of recently expanded axillary leaves with (14)CO(2) showed that both antirrhinoside and antirrhide were prominently labeled in the laminar tissue. However, only (14)C-antirrhinoside was recovered in the subtending petiole tissue, consistent with the suggestion that it is a phloem mobile compound.


Assuntos
Antirrhinum/metabolismo , Iridoides/metabolismo , Antirrhinum/crescimento & desenvolvimento , Cromatografia Líquida de Alta Pressão , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Raízes de Plantas/metabolismo , Caules de Planta/metabolismo
19.
J Exp Bot ; 57(4): 801-14, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16449378

RESUMO

Diel C export from source leaves of two Flaveria linearis lines [85-1: high cytosolic fructose-1,6-bisphosphatase (cytFBPase) and 84-9: low cytFBPase] were estimated using three methods, including leaf steady-state (14)CO(2) labelling, leaf metabolite analysis, and leaf dry mass analysis in conjunction with leaf CO(2) exchange measurements. Synthesis and accumulation of starch during the daytime were much higher in 84-9. Relative (14)C-export (export as a % of photosynthesis) in the light was 36% higher in 85-1. The diel export patterns from (14)C-analyses correlated with those based on metabolite or dry weight/gas exchange analyses during the daytime, but not during the night. Night-time export estimated from (14)C-disappearance was 3.6 times lower than those estimated using the other methods. Even though the starch degradation at night was greater for 84-9, night-time export in 84-9 was similar to 85-1, since 84-9 showed both higher respiration and accumulation of soluble sugars (i.e. glucose) at night. Patterns of (14)C allocation to sink organs were also different in the two lines. Main stem growth was less in 84-9, being reduced most in the light when leaf export was lower relative to 85-1. Supplementation with sucrose for 1 h daily via the roots at a time when leaf export in 84-9 was low relative to 85-1 increased the stem growth rate of 84-9 to a level similar with that of 85-1. This study provides evidence that diel C availability predicted by source strength (e.g. C-export rate) influences main stem extension growth and the pattern of sink development in F. linearis.


Assuntos
Carbono/metabolismo , Ritmo Circadiano/fisiologia , Flaveria/metabolismo , Amido/metabolismo , Sacarose/metabolismo , Dióxido de Carbono/metabolismo , Radioisótopos de Carbono , Flaveria/crescimento & desenvolvimento , Fotossíntese/fisiologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Brotos de Planta/crescimento & desenvolvimento , Brotos de Planta/metabolismo , Caules de Planta/crescimento & desenvolvimento , Caules de Planta/metabolismo
20.
Biol Proced Online ; 7: 31-40, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16136222

RESUMO

We describe an improved, efficient and reliable method for the vapour-phase silanization of multi-barreled, ion-selective microelectrodes of which the silanized barrel(s) are to be filled with neutral liquid ion-exchanger (LIX). The technique employs a metal manifold to exclusively and simultaneously deliver dimethyldichlorosilane to only the ion-selective barrels of several multi-barreled microelectrodes. Compared to previously published methods the technique requires fewer procedural steps, less handling of individual microelectrodes, improved reproducibility of silanization of the selected microelectrode barrels and employs standard borosilicate tubing rather than the less-conventional theta-type glass. The electrodes remain stable for up to 3 weeks after the silanization procedure. The efficacy of a double-barreled electrode containing a proton ionophore in the ion-selective barrel is demonstrated in situ in the leaf apoplasm of pea (Pisum) and sunflower (Helianthus). Individual leaves were penetrated to depth of approximately 150 microm through the abaxial surface. Microelectrode readings remained stable after multiple impalements without the need for a stabilizing PVC matrix.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...