Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Antioxid Redox Signal ; 19(15): 1815-27, 2013 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-23198948

RESUMO

SIGNIFICANCE: Once the thought of as unwanted byproducts of cellular respiration in eukaryotes, reactive oxygen species (ROS) have been shown to facilitate essential physiological roles. It is now understood that ROS are critical mediators of intracellular signaling. Control of signal transduction downstream of growth factor receptors by ROS is a complex process whose details are only recently coming to light. RECENT ADVANCES: Indeed, recent evidence points to control of signal propagation by ROS at multiple levels in the typical cascade. Growth factor stimulation activates nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Noxs) at the membrane, producing superoxide in the extracellular matrix, which is catalyzed to the membrane-permeable hydrogen peroxide (H2O2) that mediates intracellular signaling events. CRITICAL ISSUES: The potential for H2O2, however, to disrupt cellular functions by damaging proteins and nucleic acids demands that its levels are kept in check by receptor-associated peroxiredoxins. This interplay of Nox and peroxiredoxin activity moderates levels of H2O2 sufficiently to modify signaling partners locally. Among the best studied of these partners are redox-controlled phosphatases that are inactivated by H2O2. Phosphatases regulate signal propagation downstream of receptors, and thus their inactivation allows a further level of control. Transmission of information further downstream to targets such as transcription factors, themselves regulated by ROS, completes this pathway. FUTURE DIRECTIONS: Thus, signal propagation or attenuation can be dictated by ROS at multiple points. Given the complex nature of these processes, we envisage the emerging trends in the field of redox signaling in the context of growth factor stimulation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Oxirredução , Transdução de Sinais , Animais , Humanos , Peroxirredoxinas/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
2.
Invest Ophthalmol Vis Sci ; 53(10): 6645-54, 2012 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-22956616

RESUMO

PURPOSE: Gliosis is the response of glial cells within retinal tissue to injury. It can be beneficial in the short term, but if the response is extended it can lead to scar formation, which contributes to blindness. Phosphorylation of extracellular signal regulated kinase 1/2 (ERK1/2) is considered to be a hallmark event of gliosis, but the factors involved throughout its associated signaling pathway remain poorly understood, particularly in the retina. Because reactive oxygen species (ROS) can inhibit phosphatases, thereby altering the phosphorylation of proteins, this study tested the hypothesis that ROS regulate the phosphorylation of ERK1/2 (pERK1/2) in gliosis. METHODS: Increases in pERK1/2 were detected using Western blotting and immunofluorescence in three models of retinal stress, specifically the in vivo light induction, the rd1 disease, and the ex vivo retinal explant models. Explanted murine retinas were used to identify the signaling partners of pERK1/2 via Western blotting, in conjunction with inhibitors. The effect of this pathway on cell death was measured with terminal dUTP nick end labeling. RESULTS: It was demonstrated that several inhibitors of ROS greatly reduce the levels of pERK1/2 in the somata of Müller cells and furthermore decrease two other downstream signaling events: the phosphorylation of STAT3 and the upregulation of basic fibroblast growth factor. Using the specific inhibitor of ERK1/2, UO126, the resultant outcomes of this signaling pathway were determined to contribute significantly to cell survival. CONCLUSIONS: The novel finding of this study that ROS contribute to a prosurvival signaling pathway in retinal Müller cell gliosis indicates that some degree of caution should be used when considering antioxidants as therapeutics.


Assuntos
Fator 2 de Crescimento de Fibroblastos/metabolismo , Gliose/metabolismo , Sistema de Sinalização das MAP Quinases/fisiologia , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Degeneração Retiniana/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , Modelos Animais de Doenças , Técnica Indireta de Fluorescência para Anticorpo , Marcação In Situ das Extremidades Cortadas , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Fosforilação , Fator de Transcrição STAT3/metabolismo , Regulação para Cima
3.
Exp Cell Res ; 318(11): 1278-84, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22366479

RESUMO

There is an urgent need for therapies for retinal diseases; retinitis pigmentosa sufferers have no treatment options available and those targeted at other retinopathies have shown limited effectiveness. The process of programmed cell death or apoptosis although complex, remains a possible target for the treatment of retinal diseases. Having identified apoptosis in the vertebrate retina in populations of immature neurons as an essential part of development it was proposed that re-activation of these developmental cell death pathways might provide insight into the death mechanisms operating in retinal diseases. However, the discovery that numerous factors initiate and mediate the apoptotic cascade in mature photoreceptors has resulted in a relatively untargeted approach to examining and arresting apoptosis in the retina. In the last 5 years, mouse models have been treated with a diverse range of drugs or factors including anti-oxidants, growth factors, steroid hormones, calcium/calpain inhibitors and tetracycline antibiotics. Therefore to draw a unifying theme from these broad research areas is challenging. However, this review focusses on two targets which are currently under investigation, reactive oxygen species and mammalian target of rapamycin, drawing together the common themes of these research areas.


Assuntos
Apoptose/efeitos dos fármacos , Doenças Retinianas/tratamento farmacológico , Animais , Humanos , Espécies Reativas de Oxigênio/antagonistas & inibidores , Retina/efeitos dos fármacos , Retina/metabolismo , Retina/patologia , Doenças Retinianas/metabolismo , Doenças Retinianas/patologia , Serina-Treonina Quinases TOR/efeitos dos fármacos
4.
J Neurosci Methods ; 199(1): 26-34, 2011 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-21557968

RESUMO

This study uses an in vitro rd10 mouse model to quantify and compare the ability of the monopolar and the (concentric) bipolar electrode configurations for subretinal stimulation. To allow for results which can be directly compared an identical region of the retina was stimulated due to the circumstance that the bipolar electrode configuration allows also for monopolar stimulation, if the concentric counter-electrode is set potential-free (floating). A ganglion cell, located centrally over the bipolar electrode configuration was selected to extracellularly record action potentials during stimulation. To analyse the recorded action potentials, we introduce a new method which combines the advantages of (a) singular value decomposition (SVD) for weighting similar modulation patterns with which the recorded action potentials are characterized and (b) multi curve fitting to identify a common threshold level, required to finally assemble a strength-duration relationship (SDR). By directly comparing the obtained SDR curves, we found that the efficiency of stimulation with the monopolar electrode configuration is significantly higher than with the bipolar electrode configuration. All obtained SDR curves were fitted using the Lapicque model to estimate the chronaxie times and the rheobase currents. Liquid inclusions, eventually separating the retina from the electrodes are discussed to be a major cause for low ganglion cell responses during stimulation with the bipolar electrode configuration.


Assuntos
Terapia por Estimulação Elétrica/métodos , Estimulação Elétrica/métodos , Potenciais Evocados , Microeletrodos , Células Ganglionares da Retina/fisiologia , Potenciais de Ação , Algoritmos , Animais , Modelos Animais de Doenças , Terapia por Estimulação Elétrica/instrumentação , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Técnicas de Cultura de Órgãos , Técnicas de Patch-Clamp , Retinose Pigmentar/patologia , Retinose Pigmentar/terapia , Limiar Sensorial
5.
Eur J Neurosci ; 33(4): 632-41, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21219477

RESUMO

In many retinal diseases, it is the death of photoreceptors that leads to blindness. In previous in vitro and in vivo studies, basic fibroblast growth factor (bFGF) has been shown to increase retinal cell survival. More recently, reactive oxygen species (ROS) have also been shown to promote cell survival, contrary to the traditional view that they are solely destructive molecules. Due to this possible link, we hypothesised that bFGF could stimulate the production of ROS, which in turn stimulates the protein kinase B (Akt) survival pathway. Flow cytometry was used to measure the fluorescence of oxidised dihydrorhodamine, a ROS indicator, in the murine 661W photoreceptor cell line under several different conditions. Expression of cyclooxygenase (Cox) enzymes was evaluated by immunohistochemistry, and the response of photoreceptor cells to exogenous bFGF in the explanted mouse retina was studied by confocal microscopy. Exogenous addition of bFGF to 661W cells resulted in an increase in ROS production that lasted for 24 h. When this ROS production was inhibited, bFGF-induced phosphorylation of Akt was prevented. Through the use of inhibitors and small interfering RNA in the cell line, the source of this production was shown to be Cox and to involve the activation of phospholipases A(2) + C. This pathway may also occur in the mouse retina, as we showed that the retina expressed Cox1&2, and that photoreceptors in explanted retina respond to bFGF by increasing their ROS levels. These results demonstrate that exogenous bFGF can stimulate ROS production through the activation of Cox, and activate the Akt pathway.


Assuntos
Fator 2 de Crescimento de Fibroblastos/farmacologia , Fosfatidilinositol 3-Quinases/metabolismo , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Animais , Linhagem Celular , Ciclo-Oxigenase 1/metabolismo , Ciclo-Oxigenase 2/metabolismo , Inibidores de Ciclo-Oxigenase/metabolismo , Diclofenaco/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Oxirredução , Fosfatidilinositol 3-Quinases/genética , Fosfolipases A/metabolismo , Células Fotorreceptoras de Vertebrados/citologia , Proteínas Proto-Oncogênicas c-akt/genética , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Fosfolipases Tipo C/metabolismo
6.
Mol Vis ; 16: 283-93, 2010 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-20177432

RESUMO

PURPOSE: The production of reactive oxygen species (ROS) can lead to oxidative stress, which is a strong contributory factor to many ocular diseases. In this study, the removal of trophic factors is used as a model system to investigate the effects of stress in the retina. The aims were to determine if both rod and cone photoreceptor cells produce ROS when they are deprived of trophic factor support and to demonstrate if the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase (Nox) enzymes are responsible for this ROS production. METHODS: Retinas were explanted from mice aged between postnatal days 8-10 and cultured overnight. The following morning, confocal microscopy combined with various fluorescent probes was used to detect the production of ROS. Each time peanut agglutinin (PNA), a cone photoreceptor marker, was used to facilitate orientation of the retina. Dihydroethidium and dihydrorhodamine 123 (DHR123) were used to determine which cells produce ROS. Subsequently, western blots of retinal serial sections were used to detect the presence of Noxs in the different retinal layers. The Nox inhibitor apocynin was then tested to determine if it altered the production of ROS within these cells. RESULTS: Live retinal explants, viewed at high magnifications using confocal microscopy, displayed an increase in the fluorescent products of dihydroethidium and DHR123 upon serum removal when compared to controls. DHR123 fluorescence, once oxidized, localized to mitochondria and was found in the same focal plane as the PNA staining. This showed that cones and rods produced ROS when stressed. Retinal serial sectioning established that the photoreceptor layer expressed Nox4, dual oxidase (Duox) 1, and Duox2 at varying levels. Finally, the Nox inhibitor apocynin decreased the burst stimulated by the stress of serum removal. CONCLUSIONS: Confocal microscopy and PNA staining allowed differentiation of cell types within the outermost layers of the retina, demonstrating that both rods and cones generated ROS in response to the stress of serum deprivation. Nox4 was the most abundantly expressed Nox in the photoreceptor layer, but Duox1 and Duox2 were also present at detectable levels, and as apocynin reduced the levels of ROS produced, this implied that these proteins may play some role in this production.


Assuntos
Espécies Reativas de Oxigênio/metabolismo , Células Fotorreceptoras Retinianas Cones/citologia , Células Fotorreceptoras Retinianas Cones/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/citologia , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Estresse Fisiológico , Técnicas de Cultura de Tecidos/métodos , Acetofenonas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , NADPH Oxidases/antagonistas & inibidores , NADPH Oxidases/metabolismo , Aglutinina de Amendoim/metabolismo , Explosão Respiratória/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/efeitos dos fármacos , Células Fotorreceptoras Retinianas Cones/enzimologia , Células Fotorreceptoras Retinianas Bastonetes/efeitos dos fármacos , Células Fotorreceptoras Retinianas Bastonetes/enzimologia , Estresse Fisiológico/efeitos dos fármacos
7.
Antioxid Redox Signal ; 11(11): 2655-71, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19558209

RESUMO

Reactive oxygen species (ROS) were seen as destructive molecules, but recently, they have been shown also to act as second messengers in varying intracellular signaling pathways. This review concentrates on hydrogen peroxide (H2O2), as it is a more stable ROS, and delineates its role as a survival molecule. In the first part, the production of H2O2 through the NADPH oxidase (Nox) family is investigated. Through careful examination of Nox proteins and their regulation, it is determined how they respond to stress and how this can be prosurvival rather than prodeath. The pathways on which H2O2 acts to enable its prosurvival function are then examined in greater detail. The main survival pathways are kinase driven, and oxidation of cysteines in the active sites of various phosphatases can thus regulate those survival pathways. Regulation of transcription factors such as p53, NF-kappaB, and AP-1 also are reviewed. Finally, prodeath proteins such as caspases could be directly inhibited through their cysteine residues. A better understanding of the prosurvival role of H2O2 in cells, from the why and how it is generated to the various molecules it can affect, will allow more precise targeting of therapeutics to this pathway.


Assuntos
Sobrevivência Celular/fisiologia , Peróxido de Hidrogênio/metabolismo , Transdução de Sinais/fisiologia , Animais , Sobrevivência Celular/genética , Humanos , Modelos Biológicos , NADPH Oxidases/química , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oxirredução , Transdução de Sinais/genética
8.
J Neurochem ; 109(5): 1544-54, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19344371

RESUMO

Reactive oxygen species (ROS) have traditionally been viewed as a toxic group of molecules; however, recent publications have shown that these molecules, including H(2)O(2), can also strongly promote cell survival. Even though the retina has a large capacity to produce ROS, little is known about its non-mitochondrial sources of these molecules, in particular the expression and function of NADPH oxidase (Nox) proteins which are involved in the direct generation of superoxide and indirectly H(2)O(2). This study demonstrated that 661W cells, a retina-derived cell line, and mouse retinal explants express Nox2, Nox4 and certain of their well-established regulators. The roles of Nox2 and Nox4 in producing pro-survival H(2)O(2) were determined using 661W cells and some of the controlling factors were identified. To ascertain if this phenomenon could have physiological relevance, the novel technique of time-lapse imaging of dichlorofluorescein fluorescence (generated upon H(2)O(2) production) in retinal explants was established and it showed that explants also produce a burst of H(2)O(2). The increase in H(2)O(2) production was partly blocked by an inhibitor of Nox proteins. Overall, this study demonstrates a pro-survival role of Nox2 and Nox4 in retina-derived cells, elucidates some of the regulatory mechanisms and reveals that a similar phenomenon exists in retinal tissue as a whole.


Assuntos
Peróxido de Hidrogênio/metabolismo , NADH NADPH Oxirredutases/metabolismo , Estresse Oxidativo/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Retina/metabolismo , Transdução de Sinais/fisiologia , Sal Dissódico do Ácido 1,2-Di-Hidroxibenzeno-3,5 Dissulfônico/farmacologia , Animais , Animais Recém-Nascidos , Antioxidantes/farmacologia , Ácidos Aristolóquicos/farmacologia , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Meios de Cultura Livres de Soro/farmacologia , Relação Dose-Resposta a Droga , Ácidos Eicosanoicos/farmacologia , Citometria de Fluxo , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Peróxido de Hidrogênio/farmacologia , Técnicas In Vitro , Camundongos , Camundongos Endogâmicos C57BL , NADH NADPH Oxirredutases/genética , Estresse Oxidativo/efeitos dos fármacos , Paraquat/farmacologia , Células Fotorreceptoras/efeitos dos fármacos , Células Fotorreceptoras/metabolismo , RNA Interferente Pequeno/farmacologia , Retina/citologia , Transdução de Sinais/efeitos dos fármacos , Estatísticas não Paramétricas
9.
Biochem J ; 404(1): 23-9, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17300218

RESUMO

Cell repulsion responses to Eph receptor activation are linked to rapid actin cytoskeletal reorganizations, which in turn are partially mediated by Rho-ROCK (Rho kinase) signalling, driving actomyosin contractility. In the present study, we show that Rho alone is not sufficient for this repulsion response. Rather, Cdc42 (cell division cycle 42) and its effector MRCK (myotonic dystrophy kinase-related Cdc42-binding kinase) are also critical for ephrinB-induced cell retraction. Stimulation of endothelial cells with ephrinB2 triggers rapid, but transient, cell retraction. We show that, although membrane retraction is fully blocked by blebbistatin (a myosin-II ATPase inhibitor), it is only partially blocked by inhibiting Rho-ROCK signalling, suggesting that there is ROCK-independent signalling to actomyosin contractility downstream of EphBs. We find that a combination of either Cdc42 or MRCK inhibition with ROCK inhibition completely abolishes the repulsion response. Additionally, endocytosis of ephrin-Eph complexes is not required for initial cell retraction, but is essential for subsequent Rac-mediated re-spreading of cells. Our data reveal a complex interplay of Rho, Rac and Cdc42 in the process of EphB-mediated cell retraction-recovery responses.


Assuntos
Endotélio Vascular/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Receptores da Família Eph/fisiologia , Fator Rho/fisiologia , Proteína cdc42 de Ligação ao GTP/fisiologia , Biotinilação , Células Cultivadas , Endotélio Vascular/efeitos dos fármacos , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Imuno-Histoquímica , Transdução de Sinais , Veias Umbilicais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...