Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Transl Med ; 16(739): eadk9109, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38507469

RESUMO

Myasthenia gravis (MG) is a neuromuscular disease that results in compromised transmission of electrical signals at the neuromuscular junction (NMJ) from motor neurons to skeletal muscle fibers. As a result, patients with MG have reduced skeletal muscle function and present with symptoms of severe muscle weakness and fatigue. ClC-1 is a skeletal muscle specific chloride (Cl-) ion channel that plays important roles in regulating neuromuscular transmission and muscle fiber excitability during intense exercise. Here, we show that partial inhibition of ClC-1 with an orally bioavailable small molecule (NMD670) can restore muscle function in rat models of MG and in patients with MG. In severely affected MG rats, ClC-1 inhibition enhanced neuromuscular transmission, restored muscle function, and improved mobility after both single and prolonged administrations of NMD670. On this basis, NMD670 was progressed through nonclinical safety pharmacology and toxicology studies, leading to approval for testing in clinical studies. After successfully completing phase 1 single ascending dose in healthy volunteers, NMD670 was tested in patients with MG in a randomized, placebo-controlled, single-dose, three-way crossover clinical trial. The clinical trial evaluated safety, pharmacokinetics, and pharmacodynamics of NMD670 in 12 patients with mild MG. NMD670 had a favorable safety profile and led to clinically relevant improvements in the quantitative myasthenia gravis (QMG) total score. This translational study spanning from single muscle fiber recordings to patients provides proof of mechanism for ClC-1 inhibition as a potential therapeutic approach in MG and supports further development of NMD670.


Assuntos
Cloretos , Miastenia Gravis , Humanos , Ratos , Animais , Cloretos/uso terapêutico , Miastenia Gravis/tratamento farmacológico , Músculo Esquelético/fisiologia , Junção Neuromuscular , Canais de Cloreto
2.
Mov Disord ; 38(10): 1795-1805, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37401265

RESUMO

The validation of objective and easy-to-implement biomarkers that can monitor the effects of fast-acting drugs among Parkinson's disease (PD) patients would benefit antiparkinsonian drug development. We developed composite biomarkers to detect levodopa/carbidopa effects and to estimate PD symptom severity. For this development, we trained machine learning algorithms to select the optimal combination of finger tapping task features to predict treatment effects and disease severity. Data were collected during a placebo-controlled, crossover study with 20 PD patients. The alternate index and middle finger tapping (IMFT), alternative index finger tapping (IFT), and thumb-index finger tapping (TIFT) tasks and the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS) III were performed during treatment. We trained classification algorithms to select features consisting of the MDS-UPDRS III item scores; the individual IMFT, IFT, and TIFT; and all three tapping tasks collectively to classify treatment effects. Furthermore, we trained regression algorithms to estimate the MDS-UPDRS III total score using the tapping task features individually and collectively. The IFT composite biomarker had the best classification performance (83.50% accuracy, 93.95% precision) and outperformed the MDS-UPDRS III composite biomarker (75.75% accuracy, 73.93% precision). It also achieved the best performance when the MDS-UPDRS III total score was estimated (mean absolute error: 7.87, Pearson's correlation: 0.69). We demonstrated that the IFT composite biomarker outperformed the combined tapping tasks and the MDS-UPDRS III composite biomarkers in detecting treatment effects. This provides evidence for adopting the IFT composite biomarker for detecting antiparkinsonian treatment effect in clinical trials. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Parkinson , Humanos , Estudos Cross-Over , Doença de Parkinson/diagnóstico , Doença de Parkinson/tratamento farmacológico , Antiparkinsonianos/farmacologia , Antiparkinsonianos/uso terapêutico , Índice de Gravidade de Doença , Testes de Estado Mental e Demência , Biomarcadores
3.
JCI Insight ; 7(9)2022 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-35316224

RESUMO

BACKGROUNDPotent synthetic opioids, such as fentanyl, are increasingly abused, resulting in unprecedented numbers of fatalities from respiratory depression. Treatment with the high-affinity mu-opioid receptor partial agonist buprenorphine may prevent fatalities by reducing binding of potent opioids to the opioid receptor, limiting respiratory depression.METHODSTo characterize buprenorphine-fentanyl interaction at the level of the mu-opioid receptor in 2 populations (opioid-naive individuals and individuals who chronically use high-dose opioids), the effects of escalating i.v. fentanyl doses with range 0.075-0.35 mg/70 kg (opioid naive) and 0.25-0.70 mg/70 kg (chronic opioid use) on iso-hypercapnic ventilation at 2-3 background doses of buprenorphine (target plasma concentrations range: 0.2-5 ng/mL) were quantified using receptor association/dissociation models combined with biophase distribution models.RESULTSBuprenorphine produced mild respiratory depression, while high doses of fentanyl caused pronounced respiratory depression and apnea in both populations. When combined with fentanyl, buprenorphine produced a receptor binding-dependent reduction of fentanyl-induced respiratory depression in both populations. In individuals with chronic opioid use, at buprenorphine plasma concentrations of 2 ng/mL or higher, a protective effect against high-dose fentanyl was observed.CONCLUSIONOverall, the results indicate that when buprenorphine mu-opioid receptor occupancy is sufficiently high, fentanyl is unable to activate the mu-opioid receptor and consequently will not cause further respiratory depression in addition to the mild respiratory effects of buprenorphine.TRIAL REGISTRATIONTrialregister.nl, no. NL7028 (https://www.trialregister.nl/trial/7028)FUNDINGIndivior Inc., North Chesterfield, Virginia, USA.


Assuntos
Buprenorfina , Insuficiência Respiratória , Analgésicos Opioides/efeitos adversos , Buprenorfina/farmacologia , Buprenorfina/uso terapêutico , Fentanila/efeitos adversos , Humanos , Receptores Opioides , Insuficiência Respiratória/induzido quimicamente , Insuficiência Respiratória/tratamento farmacológico
4.
JMIR Form Res ; 5(12): e31890, 2021 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-34967757

RESUMO

BACKGROUND: Although electrocardiography is the gold standard for heart rate (HR) recording in clinical trials, the increasing availability of smartwatch-based HR monitors opens up possibilities for drug development studies. Smartwatches allow for inexpensive, unobtrusive, and continuous HR estimation for potential detection of treatment effects outside the clinic, during daily life. OBJECTIVE: The aim of this study is to evaluate the repeatability and sensitivity of smartwatch-based HR estimates collected during a randomized clinical trial. METHODS: The data were collected as part of a multiple-dose, investigator-blinded, randomized, placebo-controlled, parallel-group study of 12 patients with Parkinson disease. After a 6-day baseline period, 4 and 8 patients were treated for 7 days with an ascending dose of placebo and clenbuterol, respectively. Throughout the study, the smartwatch provided HR and sleep state estimates. The HR estimates were quantified as the 2.5th, 50th, and 97.5th percentiles within awake and asleep segments. Linear mixed models were used to calculate the following: (1) the intraclass correlation coefficient (ICC) of estimated sleep durations, (2) the ICC and minimum detectable effect (MDE) of the HR estimates, and (3) the effect sizes of the HR estimates. RESULTS: Sleep duration was moderately repeatable (ICC=0.64) and was not significantly affected by study day (P=.83), clenbuterol (P=.43), and study day by clenbuterol (P=.73). Clenbuterol-induced changes were detected in the asleep HR as of the first night (+3.79 beats per minute [bpm], P=.04) and in the awake HR as of the third day (+8.79 bpm, P=.001). The median HR while asleep had the highest repeatability (ICC=0.70). The MDE (N=12) was found to be smaller when patients were asleep (6.8 bpm to 11.7 bpm) than while awake (10.7 bpm to 22.1 bpm). Overall, the effect sizes for clenbuterol-induced changes were higher while asleep (0.49 to 2.75) than while awake (0.08 to 1.94). CONCLUSIONS: We demonstrated the feasibility of using smartwatch-based HR estimates to detect clenbuterol-induced changes during clinical trials. The asleep HR estimates were most repeatable and sensitive to treatment effects. We conclude that smartwatch-based HR estimates obtained during daily living in a clinical trial can be used to detect and track treatment effects. TRIAL REGISTRATION: Netherlands Trials Register NL8002; https://www.trialregister.nl/trial/8002.

5.
PLoS One ; 16(12): e0260783, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34874977

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease that affects almost 2% of the population above the age of 65. To better quantify the effects of new medications, fast and objective methods are needed. Touchscreen-based tapping tasks are simple yet effective tools for quantifying drug effects on PD-related motor symptoms, especially bradykinesia. However, there is no consensus on the optimal task set-up. The present study compares four tapping tasks in 14 healthy participants. In alternate finger tapping (AFT), tapping occurred with the index and middle finger with 2.5 cm between targets, whereas in alternate side tapping (AST) the index finger with 20 cm between targets was used. Both configurations were tested with or without the presence of a visual cue. Moreover, for each tapping task, within- and between-day repeatability and (potential) sensitivity of the calculated parameters were assessed. Visual cueing reduced tapping speed and rhythm, and improved accuracy. This effect was most pronounced for AST. On average, AST had a lower tapping speed with impaired accuracy and improved rhythm compared to AFT. Of all parameters, the total number of taps and mean spatial error had the highest repeatability and sensitivity. The findings suggest against the use of visual cueing because it is crucial that parameters can vary freely to accurately capture medication effects. The choice for AFT or AST depends on the research question, as these tasks assess different aspects of movement. These results encourage further validation of non-cued AFT and AST in PD patients.


Assuntos
Dedos/fisiologia , Destreza Motora/fisiologia , Movimento , Doença de Parkinson/terapia , Desempenho Psicomotor , Adulto , Feminino , Humanos , Masculino
7.
Br J Clin Pharmacol ; 87(12): 4658-4669, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33931884

RESUMO

AIMS: Evaluate safety, tolerability, pharmacokinetics (PK) and target engagement (TE) of losmapimod in blood and muscle in facioscapulohumeral dystrophy (FSHD). METHODS: This study included Part A: 10 healthy volunteers randomized to single oral doses of losmapimod (7.5 mg then 15 mg; n = 8) or placebo (both periods; n = 2); Part B: 15 FSHD subjects randomized to placebo (n = 3), or losmapimod 7.5 mg (n = 6) or 15 mg (n = 6); and Part C: FSHD subjects received open-label losmapimod 15 mg (n = 5) twice daily for 14 days. Biopsies were performed in FSHD subjects at baseline and Day 14 in magnetic resonance imaging-normal appearing (Part B) and affected muscle identified by abnormal short-tau inversion recovery sequence + (Part C). PK and TE, based on pHSP27:total HSP27, were assessed in muscle and sorbitol-stimulated blood. RESULTS: PK profiles were similar between healthy volunteers and FSHD subjects, with mean Cmax and AUC0-12 for 15 mg in FSHD subjects (Part B) of 85.0 ± 16.7 ng*h/mL and 410 ± 50.3 ng*h/mL, respectively. Part B and Part C PK results were similar, and 7.5 mg results were approximately dose proportional to 15 mg results. Dose-dependent concentrations in muscle (42.1 ± 10.5 ng/g [7.5 mg] to 97.2 ± 22.4 ng/g [15 mg]) were observed, with plasma-to-muscle ratio from ~0.67 to ~1 at estimated tmax of 3.5 hours postdose. TE was observed in blood and muscle. Adverse events (AEs) were mild and self-limited. CONCLUSION: Losmapimod was well tolerated, with no serious AEs. Dose-dependent PK and TE were observed. This study supports advancing losmapimod into Phase 2 trials in FSHD. CLINICAL TRIAL REGISTRATION: Clinical trial identifier ToetsingOnline: NL68539.056.18 Nederlands Trials Register NL8000.


Assuntos
Ciclopropanos , Distrofia Muscular Facioescapuloumeral , Piridinas , Administração Oral , Área Sob a Curva , Ciclopropanos/farmacocinética , Ciclopropanos/uso terapêutico , Humanos , Distrofia Muscular Facioescapuloumeral/tratamento farmacológico , Piridinas/farmacocinética , Piridinas/uso terapêutico
8.
Mov Disord ; 35(9): 1667-1674, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32618053

RESUMO

BACKGROUND: The most common genetic risk factor for Parkinson's disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson's disease from a single large population. METHODS: The GBA1 gene was assessed in 3402 Dutch Parkinson's disease patients using next-generation sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson's disease was compared in carriers and noncarriers. RESULTS: Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of controls (OR, 2.6; P < 0.001). Eighteen novel variants were detected. Variants previously associated with Gaucher's disease were identified in 5.0% of patients compared with 1.5% of controls (OR, 3.4; P < 0.001). The rarely reported complex allele p.D140H + p.E326K appears to likely be a Dutch founder variant, found in 2.4% of patients and 0.9% of controls (OR, 2.7; P = 0.012). The number of first-degree relatives (excluding children) with Parkinson's disease was higher in p.D140H + p.E326K carriers (5.6%, 21 of 376) compared with p.E326K carriers (2.9%, 29 of 1014); OR, 2.0; P = 0.022, suggestive of a dose effect for different GBA1 variants. CONCLUSIONS: Dutch Parkinson's disease patients display one of the largest frequencies of GBA1 variants reported so far, consisting in large part of the mild p.E326K variant and the more severe Dutch p.D140H + p.E326K founder allele. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.


Assuntos
Doença de Gaucher , Doença de Parkinson , Criança , Glucosilceramidase/genética , Humanos , Mutação/genética , Países Baixos/epidemiologia , Doença de Parkinson/genética
9.
Behav Res Methods ; 52(4): 1617-1628, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-31965477

RESUMO

Measuring altered nociceptive processing involved in chronic pain is difficult due to a lack of objective methods. Potential methods to characterize human nociceptive processing involve measuring neurophysiological activity and psychophysical responses to well-defined stimuli. To reliably measure neurophysiological activity in response to nociceptive stimulation using EEG, synchronized activation of nerve fibers and a large number of stimuli are required. On the other hand, to reliably measure psychophysical detection thresholds, selection of stimulus amplitudes around the detection threshold and many stimulus-response pairs are required. Combining the two techniques helps in quantifying the properties of nociceptive processing related to detected and non-detected stimuli around the detection threshold.The two techniques were combined in an experiment including 20 healthy participants to study the effect of intra-epidermal electrical stimulus properties (i.e. amplitude, single- or double-pulse and trial number) on the detection thresholds and vertex potentials. Generalized mixed regression and linear mixed regression were used to quantify the psychophysical detection probability and neurophysiological EEG responses, respectively.It was shown that the detection probability is significantly modulated by the stimulus amplitude, trial number, and the interaction between stimulus type and amplitude. Furthermore, EEG responses were significantly modulated by stimulus detection and trial number. Hence, we successfully demonstrated the possibility to simultaneously obtain information on psychophysical and neurophysiological properties of nociceptive processing. These results warrant further investigation of the potential of this method to observe altered nociceptive processing.


Assuntos
Potenciais Evocados , Nociceptividade , Humanos , Probabilidade
10.
Handb Exp Pharmacol ; 260: 371-397, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31707472

RESUMO

Clinical trials have been conducted since 500 BC. Currently, the methodological gold standard is the randomized controlled clinical trial, introduced by Austin Bradford Hill. This standard has produced enormous amounts of high-quality evidence, resulting in evidence-based clinical guidelines for physicians. However, the current trial paradigm needs to evolve because of the ongoing decrease of the incidence of hard endpoints and spiraling trial costs. While new trial designs, such as adaptive clinical trials, may lead to an increase in efficiency and decrease in costs, we propose a shift towards value-based trial design: a paradigm that mirrors value-based thinking in business and health care. Value-based clinical trials will use technology to focus more on symptoms and endpoints that patients care about, will incorporate fewer research centers, and will measure a state or consequence of disease at home or at work. Furthermore, they will measure the subjective experience of subjects in relation to other objective measurements. Ideally, the endpoints are suitable for individual assessment of the effect of an intervention. The value-based clinical trial of the future will have a low burden for participants, allowing for the inclusion of neglected populations such as children and the elderly, will be data-rich due to a high frequency of measurements, and can be conducted with technology that is already available.


Assuntos
Ensaios Clínicos como Assunto/normas , Projetos de Pesquisa/tendências , Humanos
11.
Eur J Pain ; 23(6): 1129-1140, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30793411

RESUMO

BACKGROUND: Although reproducibility is considered essential for any method used in scientific research, it is investigated only rarely; thus, strikingly little has been published regarding the reproducibility of evoked pain models involving human subjects. Here, we studied the reproducibility of a battery of evoked pain models for demonstrating the analgesic effects of two analgesic compounds. METHODS: A total of 81 healthy subjects participated in four studies involving a battery of evoked pain tests in which mechanical, thermal and electrical stimuli were used to measure pain detection and tolerance thresholds. Pharmacodynamic outcome variables were analysed using a mixed model analysis of variance, and a coefficient of variation was calculated by dividing the standard deviation by the least squares means. RESULTS: A total of 76 subjects completed the studies. After being administered pregabalin, the subjects' pain tolerance thresholds in the cold pressor and pressure stimulation tests were significantly increased compared to the placebo group. Moreover, the heat pain detection threshold in UVB-irradiated skin was significantly increased in subjects who were administered ibuprofen compared to the placebo group. Variation among all evoked pain tests ranged from 2.2% to 30.6%. CONCLUSIONS: Four studies using a similar design showed reproducibility with respect to the included evoked pain models. The relatively high consistency and reproducibility of two analgesics at doses known to be effective in treating clinically relevant pain supports the validity of using this pain test battery to investigate the analgesic activity and determine the active dosage of putative analgesic compounds in early clinical development. SIGNIFICANCE: The consistency and reproducibility of measuring the profile of an analgesic at clinically relevant doses illustrates that this pain test battery is a valid tool for demonstrating the analgesic activity of a test compound and for determining the optimal active dose in early clinical drug development.


Assuntos
Analgésicos/uso terapêutico , Medição da Dor/métodos , Dor/tratamento farmacológico , Adulto , Estudos Cross-Over , Método Duplo-Cego , Tolerância a Medicamentos , Feminino , Voluntários Saudáveis , Humanos , Ibuprofeno/farmacologia , Masculino , Pessoa de Meia-Idade , Limiar da Dor/efeitos dos fármacos , Pregabalina/farmacologia , Reprodutibilidade dos Testes , Pele/efeitos dos fármacos , Pele/efeitos da radiação
12.
CPT Pharmacometrics Syst Pharmacol ; 7(9): 573-580, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30043517

RESUMO

A battery of pain models can be used in clinical trials to investigate the efficacy and to establish the concentration-effect relationship of novel analgesics. This study quantified the pharmacokinetics (PK) of pregabalin after a single oral dose of 300 mg and the pharmacodynamics (PD) on the pain tolerance threshold (PTT) of the cold pressor, electrical stimulation, the pressure pain model, and on the pain detection threshold of a contact heat pain model. The PK were best described using a one-compartment model with lag time, linear absorption, and linear elimination. The PTT of the cold pressor showed a negative linear decrease over time without pregabalin. A linear drug effect was identified on the PTT of the cold pressor test and an on/off effect for the electrical stimulation PTT. No PK/PD relationship could be identified on the pressure pain and heat pain test. Citation.


Assuntos
Analgésicos/administração & dosagem , Pregabalina/administração & dosagem , Administração Oral , Adulto , Analgésicos/farmacocinética , Analgésicos/farmacologia , Estimulação Elétrica , Feminino , Humanos , Masculino , Pregabalina/farmacocinética , Pregabalina/farmacologia , Adulto Jovem
13.
Exp Brain Res ; 234(9): 2505-14, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27142052

RESUMO

Pain disorders can be initiated and maintained by malfunctioning of one or several mechanisms underlying the nociceptive function. Psychophysical procedures allow the estimation of nociceptive detection thresholds using intra-epidermal electrical stimuli. By varying the temporal properties of electrical stimuli, various contributions of nociceptive processes to stimulus processing can be observed. To observe the responsiveness of nociceptive thresholds to changes in nociceptive function, a model of capsaicin-induced nerve defunctionalization was used. Its effect on nociceptive detections thresholds was investigated over a period of 84 days. A cutaneous capsaicin (8 %) patch was applied for 60 min to the upper leg of eight healthy human participants. Single- and double-pulse electrical stimuli were presented in a pseudo-random order using an intra-epidermal electrode. Stimuli and corresponding responses were recorded on both treated and untreated skin areas prior to capsaicin application and on days 2, 7, 28, and 84. Increases in electrical detection thresholds at the capsaicin area were observed on days 2 and 7 for single-pulse stimuli. Detection thresholds corresponding to double-pulse stimuli were increased on days 7 and 28, suggesting a delayed and longer lasting effect on double-pulse stimuli. In the present study, it was demonstrated that the responsiveness of detection thresholds to capsaicin application depends on the temporal properties of electrical stimuli. The observation of capsaicin-induced changes by estimation of detection thresholds revealed different time patterns of contributions of peripheral and central mechanisms to stimulus processing.


Assuntos
Capsaicina/farmacologia , Temperatura Alta/efeitos adversos , Limiar da Dor/efeitos dos fármacos , Dor/fisiopatologia , Pele/efeitos dos fármacos , Adolescente , Adulto , Idoso , Estimulação Elétrica/métodos , Feminino , Humanos , Hiperalgesia/fisiopatologia , Masculino , Pessoa de Meia-Idade , Medição da Dor/métodos , Limiar da Dor/fisiologia , Estimulação Física/métodos , Psicofísica/métodos , Pele/inervação , Adulto Jovem
14.
Alzheimers Dement (N Y) ; 2(1): 13-22, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29067291

RESUMO

INTRODUCTION: Gln-1062 (Memogain) is a pharmacologically inactive prodrug of galantamine. Owing to its lipophilic nature, it preferentially enters the brain, where it is cleaved into active galantamine. Gln-1062 is expected to have fewer peripheral side effects than other cholinesterase inhibitors, with improved effectiveness. METHODS: This was a double-blind, comparator and placebo-controlled, sequential cohort, single ascending dose study in 58 healthy subjects with Gln-1062 in doses of 5.5, 11, 22, 33, and 44 mg, compared with oral galantamine 16 mg and donepezil 10 mg. Safety, tolerability, pharmacokinetics, and pharmacodynamics were assessed. RESULTS: Gln-1062 doses up to 33 mg were well tolerated and induced a dose-dependent increase in the plasma concentrations of Gln-1062 and galantamine. Gln-1062 had a dose-dependent positive effect on verbal memory and attention, mainly in the first hours after drug administration. DISCUSSION: Gln-1062 was better tolerated than galantamine in doses with the same molarity and led to improved effects in cognitive tests. This is most likely caused by the more favorable distribution ratio between peripheral and central cholinesterase inhibition. These results give reason for further exploration of this compound.

15.
Innov Clin Neurosci ; 12(3-4): 5S-10S, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25977839

RESUMO

For decades, there has been a distinct disconnect translating a compound's effects from basic neuroscience into clinical efficacy. This disconnect has not only been in terms of generating approved compounds, but also in rejecting targets. During the drug discovery process there are key points to be adhered to that would strengthen the likelihood of a compound being translated to the clinic. These points include 1) the importance of translational pharmacology whereby preclinical pharmacological data should predict clinical efficacy; 2) rigorous early phase drug evaluation to enhance early go/no-go decisionmaking; 3) using exposure response modeling to predict drug efficacy during proof-of-concept trials; 4) designing and conducting the appropriate proof-of-concept study; and 5) optimizing Phase II studies to set the stage for success in Phase III trials. These topics were covered in The International Society for CNS Clinical Trials and Methodology (ISCTM) Autumn 2013 meeting on the topic of translational and early development strategies and tools led by Drs. Potter and Feltner. This report comprises a review of those proceedings with a concluding summary to advance future clinical trials.

16.
Artigo em Inglês | MEDLINE | ID: mdl-15799550

RESUMO

BACKGROUND: There is an accumulating body of evidence that apoptosis is involved in the motor neuron death that occurs in ALS, and in the (G93A) mSOD1 transgenic mouse model (mSOD1 mice). CGP 3466B, a tricyclic propargylamine structurally related to (-)-deprenyl, was found to inhibit apoptosis in a wide variety of in vitro and in vivo models. We therefore studied the effect of CGP 3466B in mSOD1 mice. METHODS: As the effect of CGP 3466B was previously reported to have a bell-shaped curve, we performed a dose-ranging study. High-copy G93A mSOD1 mice were treated subcutaneously from the age of 50 days until death with four concentrations of CGP 3466B (0.39 microg kg(-1), 3.9 microg kg(-1), 39 microg kg(-1), and 390 microg kg(-1)). Behavioural tests were performed daily to determine disease onset, disease progression and survival. At the age of 110 days, two mice per group were sacrificed for histopathological analysis of the lumbar ventral horn and for semiquantitative analysis of motor neuron number. RESULTS: We observed no effect on disease onset, disease progression, or survival of the mice. We also did not observe a significant effect on the number of motor neurons due to CGP 3466B. CONCLUSIONS: We conclude that in high-copy G93A mSOD1 mice, chronic subcutaneous treatment with CGP 3466B offers no clinical benefit.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/enzimologia , Oxepinas/uso terapêutico , Superóxido Dismutase/genética , Esclerose Lateral Amiotrófica/genética , Animais , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Transgênicos , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/enzimologia , Oxepinas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...