Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 380(6641): 198-203, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37053312

RESUMO

Direct imaging of gas giant exoplanets provides information on their atmospheres and the architectures of planetary systems. However, few planets have been detected in blind surveys with direct imaging. Using astrometry from the Gaia and Hipparcos spacecraft, we identified dynamical evidence for a gas giant planet around the nearby star HIP 99770. We confirmed the detection of this planet with direct imaging using the Subaru Coronagraphic Extreme Adaptive Optics instrument. The planet, HIP 99770 b, orbits 17 astronomical units from its host star, receiving an amount of light similar to that reaching Jupiter. Its dynamical mass is 13.9 to 16.1 Jupiter masses. The planet-to-star mass ratio [(7 to 8) × 10-3] is similar to that of other directly imaged planets. The planet's atmospheric spectrum indicates an older, less cloudy analog of the previously imaged exoplanets around HR 8799.

2.
Opt Express ; 28(15): 22412-22423, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32752503

RESUMO

Any high-contrast imaging instrument in a future large space-based telescope will include an integral field spectrograph (IFS) for measuring broadband starlight residuals and characterizing the exoplanet's atmospheric spectrum. In this paper, we report the development of a high-contrast integral field spectrograph (HCIFS) at Princeton University and demonstrate its application in multi-spectral wavefront control. Moreover, we propose and experimentally validate a new reduced-dimensional system identification algorithm for an IFS imaging system, which improves the system's wavefront control speed, contrast and computational and data storage efficiency.

3.
Micromachines (Basel) ; 10(6)2019 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-31159209

RESUMO

Micro-Electro-Mechanical Systems (MEMS) Deformable Mirrors (DMs) enable precise wavefront control for optical systems. This technology can be used to meet the extreme wavefront control requirements for high contrast imaging of exoplanets with coronagraph instruments. MEMS DM technology is being demonstrated and developed in preparation for future exoplanet high contrast imaging space telescopes, including the Wide Field Infrared Survey Telescope (WFIRST) mission which supported the development of a 2040 actuator MEMS DM. In this paper, we discuss ground testing results and several projects which demonstrate the operation of MEMS DMs in the space environment. The missions include the Planet Imaging Concept Testbed Using a Recoverable Experiment (PICTURE) sounding rocket (launched 2011), the Planet Imaging Coronagraphic Technology Using a Reconfigurable Experimental Base (PICTURE-B) sounding rocket (launched 2015), the Planetary Imaging Concept Testbed Using a Recoverable Experiment - Coronagraph (PICTURE-C) high altitude balloon (expected launch 2019), the High Contrast Imaging Balloon System (HiCIBaS) high altitude balloon (launched 2018), and the Deformable Mirror Demonstration Mission (DeMi) CubeSat mission (expected launch late 2019). We summarize results from the previously flown missions and objectives for the missions that are next on the pad. PICTURE had technical difficulties with the sounding rocket telemetry system. PICTURE-B demonstrated functionality at >100 km altitude after the payload experienced 12-g RMS (Vehicle Level 2) test and sounding rocket launch loads. The PICTURE-C balloon aims to demonstrate 10 - 7 contrast using a vector vortex coronagraph, image plane wavefront sensor, and a 952 actuator MEMS DM. The HiClBaS flight experienced a DM cabling issue, but the 37-segment hexagonal piston-tip-tilt DM is operational post-flight. The DeMi mission aims to demonstrate wavefront control to a precision of less than 100 nm RMS in space with a 140 actuator MEMS DM.

4.
J Opt Soc Am A Opt Image Sci Vis ; 30(1): 128-39, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23456009

RESUMO

For a coronagraph to detect faint exoplanets, it will require focal plane wavefront control techniques to continue reaching smaller angular separations and higher contrast levels. These correction algorithms are iterative and the control methods need an estimate of the electric field at the science camera, which requires nearly all of the images taken for the correction. The best way to make such algorithms the least disruptive to science exposures is to reduce the number required to estimate the field. We demonstrate a Kalman filter estimator that uses prior knowledge to create the estimate of the electric field, dramatically reducing the number of exposures required to estimate the image plane electric field while stabilizing the suppression against poor signal-to-noise. In addition to a significant reduction in exposures, we discuss the relative merit of this algorithm to estimation schemes that do not incorporate prior state estimate history, particularly in regard to estimate error and covariance. Ultimately the filter will lead to an adaptive algorithm which can estimate physical parameters in the laboratory for robustness to variance in the optical train.

5.
Appl Opt ; 48(32): 6296-312, 2009 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-19904331

RESUMO

The past decade has seen a significant growth in research targeted at space-based observatories for imaging exosolar planets. The challenge is in designing an imaging system for high contrast. Even with a perfect coronagraph that modifies the point spread function to achieve high contrast, wavefront sensing and control is needed to correct the errors in the optics and generate a "dark hole." The high-contrast imaging laboratory at Princeton University is equipped with two Boston Micromachines Kilo-DMs. We review here an algorithm designed to achieve high contrast on both sides of the image plane while minimizing the stroke necessary from each deformable mirror (DM). This algorithm uses the first DM to correct for amplitude aberrations and uses the second DM to create a flat wavefront in the pupil plane. We then show the first results obtained at Princeton with this correction algorithm, and we demonstrate a symmetric dark hole in monochromatic light.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...