Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(27): 32461-32466, 2021 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-34213306

RESUMO

Semiconducting self-assembled monolayers (SAMs) represent highly relevant components for the fabrication of organic thin-film electronics because they enable the precise formation of active π-conjugates in terms of orientation and layer thickness. In this work, we demonstrate self-assembled monolayer field-effect transistors (SAMFETs) composed of phosphonic acid oligomers of 3-hexylthiophene (oligothiophenes-OT) with systematic variations of thiophene repeating units (5, 10, and 20). The devices exhibit stable lateral charge transport with increased mobility as a function of thiophene unit counts. Importantly, our work reveals the packing and intermolecular order of varied-chain-length SAMs at the molecular scale via X-ray reflectivity (XRR) and quantitative X-ray photoelectron spectroscopy (XPS). Short oligomers (OT5-PA and OT10-PA) arrange almost perpendicular to the substrate, forming highly ordered SAMs, whereas the long-chain OT20-PA exhibits a folded structure. By tuning the molecular order in the monolayers via the SAM substitution reaction, the OT20-PA devices show a tripling in mobility.

2.
Sci Rep ; 9(1): 74, 2019 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-30635589

RESUMO

Hybrid organic-inorganic heterointerfaces in solar cells suffer from inefficient charge separation yet the origin of performance limitations are widely unknown. In this work, we focus on the role of metal oxide-polymer interface energetics in a charge generation process. For this purpose, we present novel benzothiadiazole based thiophene oligomers that tailor the surface energetics of the inorganic acceptor TiO2 systematically. In a simple bilayer structure with the donor polymer poly(3-hexylthiophene) (P3HT), we are able to improve the charge generation process considerably. By means of an electronic characterization of solar cell devices in combination with ultrafast broadband transient absorption spectroscopy, we demonstrate that this remarkable improvement in performance originates from reduced recombination of localized charge transfer states. In this context, fundamental design rules for interlayers are revealed, which assist the charge separation at organic-inorganic interfaces. Beside acting as a physical spacer in between electrons and holes, interlayers should offer (1) a large energy offset to drive exciton dissociation, (2) a push-pull building block to reduce the Coulomb binding energy of charge transfer states and (3) an energy cascade to limit carrier back diffusion towards the interface.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...