Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Biol Cell ; 34(10): ar95, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37379206

RESUMO

Almost all mitochondrial proteins are synthesized in the cytosol and subsequently targeted to mitochondria. The accumulation of nonimported precursor proteins occurring upon mitochondrial dysfunction can challenge cellular protein homeostasis. Here we show that blocking protein translocation into mitochondria results in the accumulation of mitochondrial membrane proteins at the endoplasmic reticulum, thereby triggering the unfolded protein response (UPRER). Moreover, we find that mitochondrial membrane proteins are also routed to the ER under physiological conditions. The level of ER-resident mitochondrial precursors is enhanced by import defects as well as metabolic stimuli that increase the expression of mitochondrial proteins. Under such conditions, the UPRER is crucial to maintain protein homeostasis and cellular fitness. We propose the ER serves as a physiological buffer zone for those mitochondrial precursors that cannot be immediately imported into mitochondria while engaging the UPRER to adjust the ER proteostasis capacity to the extent of precursor accumulation.


Assuntos
Estresse do Retículo Endoplasmático , Biogênese de Organelas , Estresse do Retículo Endoplasmático/fisiologia , Resposta a Proteínas não Dobradas , Retículo Endoplasmático/metabolismo , Proteínas Mitocondriais/metabolismo
2.
Life Sci Alliance ; 6(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36941057

RESUMO

Cellular functionality relies on a well-balanced, but highly dynamic proteome. Dysfunction of mitochondrial protein import leads to the cytosolic accumulation of mitochondrial precursor proteins which compromise cellular proteostasis and trigger a mitoprotein-induced stress response. To dissect the effects of mitochondrial dysfunction on the cellular proteome as a whole, we developed pre-post thermal proteome profiling. This multiplexed time-resolved proteome-wide thermal stability profiling approach with isobaric peptide tags in combination with a pulsed SILAC labelling elucidated dynamic proteostasis changes in several dimensions: In addition to adaptations in protein abundance, we observed rapid modulations of the thermal stability of individual cellular proteins. Different functional groups of proteins showed characteristic response patterns and reacted with group-specific kinetics, allowing the identification of functional modules that are relevant for mitoprotein-induced stress. Thus, our new pre-post thermal proteome profiling approach uncovered a complex response network that orchestrates proteome homeostasis in eukaryotic cells by time-controlled adaptations of the abundance and the conformation of proteins.


Assuntos
Proteoma , Proteostase , Proteoma/metabolismo , Peptídeos , Proteínas Mitocondriais/metabolismo , Mitocôndrias/metabolismo
3.
Life Sci Alliance ; 6(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36253107

RESUMO

Mitochondria play a key role in cellular energy metabolism. Transitions between glycolytic and respiratory conditions induce considerable adaptations of the cellular proteome. These metabolism-dependent changes are particularly pronounced for the protein composition of mitochondria. Here, we show that the yeast cytosolic ubiquitin conjugase Ubc8 plays a crucial role in the remodeling process when cells transition from respiratory to fermentative conditions. Ubc8 is a conserved and well-studied component of the catabolite control system that is known to regulate the stability of gluconeogenic enzymes. Unexpectedly, we found that Ubc8 also promotes the assembly of the translocase of the outer membrane of mitochondria (TOM) and increases the levels of its cytosol-exposed receptor subunit Tom22. Ubc8 deficiency results in compromised protein import into mitochondria and reduced steady-state levels of mitochondrial proteins. Our observations show that Ubc8, which is controlled by the prevailing metabolic conditions, promotes the switch from glucose synthesis to glucose usage in the cytosol and induces the biogenesis of the mitochondrial TOM machinery to improve mitochondrial protein import during phases of metabolic transition.


Assuntos
Transporte Proteico , Proteínas de Saccharomyces cerevisiae , Enzimas de Conjugação de Ubiquitina , gama-Glutamil Hidrolase/metabolismo , Glucose/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Proteoma/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Ubiquitina/metabolismo , Enzimas de Conjugação de Ubiquitina/genética , Enzimas de Conjugação de Ubiquitina/metabolismo
5.
FEBS Lett ; 595(8): 1223-1238, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33249599

RESUMO

Most mitochondrial proteins are synthesized in the cytosol and subsequently translocated as unfolded polypeptides into mitochondria. Cytosolic chaperones maintain precursor proteins in an import-competent state. This post-translational import reaction is under surveillance of the cytosolic ubiquitin-proteasome system, which carries out several distinguishable activities. On the one hand, the proteasome degrades nonproductive protein precursors from the cytosol and nucleus, import intermediates that are stuck in mitochondrial translocases, and misfolded or damaged proteins from the outer membrane and the intermembrane space. These surveillance activities of the proteasome are essential for mitochondrial functionality, as well as cellular fitness and survival. On the other hand, the proteasome competes with mitochondria for nonimported cytosolic precursor proteins, which can compromise mitochondrial biogenesis. In order to balance the positive and negative effects of the cytosolic protein quality control system on mitochondria, mitochondrial import efficiency directly regulates the capacity of the proteasome via transcription factor Rpn4 in yeast and nuclear respiratory factor (Nrf) 1 and 2 in animal cells. In this review, we provide a thorough overview of how the proteasome regulates mitochondrial biogenesis.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Biogênese de Organelas , Complexo de Endopeptidases do Proteassoma , Proteólise , Animais , Humanos , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo
6.
Mol Biol Cell ; 31(24): 2657-2668, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32997570

RESUMO

Most mitochondrial proteins are synthesized as precursors that carry N-terminal presequences. After they are imported into mitochondria, these targeting signals are cleaved off by the mitochondrial processing peptidase (MPP). Using the mitochondrial tandem protein Arg5,6 as a model substrate, we demonstrate that MPP has an additional role in preprotein maturation, beyond the removal of presequences. Arg5,6 is synthesized as a polyprotein precursor that is imported into mitochondria and subsequently separated into two distinct enzymes. This internal processing is performed by MPP, which cleaves the Arg5,6 precursor at its N-terminus and at an internal site. The peculiar organization of Arg5,6 is conserved across fungi and reflects the polycistronic arginine operon in prokaryotes. MPP cleavage sites are also present in other mitochondrial fusion proteins from fungi, plants, and animals. Hence, besides its role as a "ticket canceller" for removal of presequences, MPP exhibits a second conserved activity as an internal processing peptidase for complex mitochondrial precursor proteins.


Assuntos
Metaloendopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Aldeído Oxirredutases/metabolismo , Sequência de Aminoácidos/genética , Sítios de Ligação/genética , Metaloendopeptidases/fisiologia , Complexos Multienzimáticos/metabolismo , Fosfotransferases (Aceptor do Grupo Carboxila)/metabolismo , Precursores de Proteínas/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato/genética , Peptidase de Processamento Mitocondrial
7.
Nat Cell Biol ; 21(6): 793-794, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31036940

RESUMO

In the version of this article originally published, parts of Figure 5 were misaligned because of a shift during production. In a, one data point was outside of the graph border. In b, axes lines were not connected, and graph lines did not reach the data points. In c and d, the axes lines were not connected. In e and g, the axes lines were not connected, and error bars and columns were not aligned. Shown below are the original and corrected versions of Figure 5. The errors have been corrected in the PDF and HTML versions of the paper.

8.
Nat Cell Biol ; 21(4): 442-451, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30886345

RESUMO

The cytosolic accumulation of mitochondrial precursors is hazardous to cellular fitness and is associated with a number of diseases. However, it is not observed under physiological conditions. Individual mechanisms that allow cells to avoid cytosolic accumulation of mitochondrial precursors have recently been discovered, but their interplay and regulation remain elusive. Here, we show that cells rapidly launch a global transcriptional programme to restore cellular proteostasis after induction of a 'clogger' protein that reduces the number of available mitochondrial import sites. Cells upregulate the protein folding and proteolytic systems in the cytosol and downregulate both the cytosolic translation machinery and many mitochondrial metabolic enzymes, presumably to relieve the workload of the overstrained mitochondrial import system. We show that this transcriptional remodelling is a combination of a 'wideband' core response regulated by the transcription factors Hsf1 and Rpn4 and a unique mitoprotein-induced downregulation of the oxidative phosphorylation components, mediated by an inactivation of the HAP complex.


Assuntos
Regulação Fúngica da Expressão Gênica , Proteínas Mitocondriais/metabolismo , Estresse Fisiológico/genética , Transcrição Gênica , Citosol/enzimologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico , Fosforilação Oxidativa , Complexo de Endopeptidases do Proteassoma/metabolismo , Biossíntese de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/biossíntese , Fatores de Transcrição/metabolismo , Ubiquitina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA