Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Cell Rep ; 42(5): 112487, 2023 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-37155329

RESUMO

Bacillus Calmette-Guérin (BCG) vaccination is a prototype model for the study of trained immunity (TI) in humans, and results in a more effective response of innate immune cells upon stimulation with heterologous stimuli. Here, we investigate the heterogeneity of TI induction by single-cell RNA sequencing of immune cells collected from 156 samples. We observe that both monocytes and CD8+ T cells show heterologous transcriptional responses to lipopolysaccharide, with an active crosstalk between these two cell types. Furthermore, the interferon-γ pathway is crucial in BCG-induced TI, and it is upregulated in functional high responders. Data-driven analyses and functional experiments reveal STAT1 to be one of the important transcription factors for TI shared in all identified monocyte subpopulations. Finally, we report the role of type I interferon-related and neutrophil-related TI transcriptional programs in patients with sepsis. These findings provide comprehensive insights into the importance of monocyte heterogeneity during TI in humans.


Assuntos
Mycobacterium bovis , Humanos , Mycobacterium bovis/metabolismo , Vacina BCG , Imunidade Treinada , Linfócitos T CD8-Positivos , Interferon gama/metabolismo , Imunidade Inata
2.
Clin Obes ; 13(2): e12568, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36426776

RESUMO

Obesity is recognized as a risk factor for adverse outcome in COVID-19, but the molecular mechanisms underlying this relationship remain unknown. Adipose tissue functions as an endocrine organ by secreting multiple pro-inflammatory and anti-inflammatory factors, known as adipocytokines, which could be involved in COVID-19 severity. We explored the role of adipocytokines in COVID-19 and its association with BMI, clinical outcome, and inflammation. This is an observational study in 195 hospitalized COVID-19 patients. Serial plasma concentrations of the adipocytokines leptin, adiponectin, resistin, and various inflammatory cytokines were assessed. Adipocytokines were compared between patients with normal weight (BMI: 18.5-24.9 kg/m2 ), overweight (BMI: 25.0-29.9 kg/m2 ), and obesity (BMI ≥ 30 kg/m2 ), between patients admitted to the ICU and to non-ICU clinical wards, and between survivors and non-survivors. Patients with overweight and obesity displayed higher leptin concentrations and lower adiponectin concentrations throughout hospital admission (p < .001), whereas resistin concentrations were not different from patients with normal weight (p = .12). Resistin concentrations correlated with inflammatory markers and were persistently higher in ICU patients and non-survivors compared to non-ICU patients and survivors, respectively (both p < .001), whereas no such relationships were found for the other adipocytokines. In conclusion, leptin and adiponectin are associated with BMI, but not with clinical outcomes and inflammation in COVID-19 patients. In contrast, resistin is not associated with BMI, but high concentrations are associated with worse clinical outcomes and more pronounced inflammation. Therefore, it is unlikely that BMI-related adipocytokines or differences in the inflammatory response underlie obesity as a risk factor for severe COVID-19.


Assuntos
Adipocinas , COVID-19 , Humanos , Leptina , Resistina , Adiponectina , Índice de Massa Corporal , Sobrepeso , Países Baixos , Obesidade , Inflamação
3.
Shock ; 59(3): 344-351, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36455260

RESUMO

Introduction: The dysregulated immune response in sepsis is highly variable, ranging from hyperinflammation to immunoparalysis. Obesity is associated with the release of inflammatory mediators from adipose tissue, known as adipocytokines, causing a chronic inflammatory state. Perhaps counterintuitively, obesity is also associated with lower mortality in sepsis patients. We investigated the association between obesity, circulating adipocytokine concentrations, immune dysregulation, and outcome in sepsis patients. Methods In this secondary analysis of a prospective study, plasma concentrations of the adipocytokines leptin, adiponectin, and resistin were assessed in 167 patients at diagnosis of sepsis due to pneumonia, bacteremia, or acute cholangitis. Adipocytokines were compared between patients with normal weight (body mass index [BMI], 18.5-24.9 kg/m 2 ; n = 67), overweight (BMI, 25.0-29.9 kg/m 2 ; n = 56), and obesity (BMI ≥30 kg/m 2 ; n = 42), as well as between immunological endotypes: hyperinflammation (n = 40), immunoparalysis (n = 62), and unclassified (n = 55). Results: Higher circulating concentrations of leptin were observed in patients with obesity compared with patients with normal weight ( P = 0.008) and overweight ( P = 0.02), whereas adiponectin and resistin plasma concentrations were not different ( P = 0.08 and P = 0.85, respectively). Resistin concentrations were associated with immunological endotypes, with the highest levels found in hyperinflammatory patients ( P < 0.001). Furthermore, resistin concentrations were predictive for 28-day mortality (adjusted odds ratio, 1.03 per 10 ng/mL; P = 0.04). These associations were not found for leptin and adiponectin. Conclusion: Obesity and BMI-related adipocytokines are not related to the development of a hyperactive or suppressed immune response as defined by ferritin and mHLA-DR expression in sepsis patients. Although resistin is related to the immune response and an increased risk of adverse clinical outcomes, these associations are similar in patients with normal weight, overweight, and obesity. This implies that the relationship between resistin and clinical outcome is likely driven by the inflammatory response and not by obesity itself. Taken together, although there exists a strong association between inflammation and sepsis mortality, our results do not point toward a role for obesity and BMI-related adipocytokines in immune dysregulation in sepsis patients.


Assuntos
Adipocinas , Sepse , Humanos , Leptina , Resistina , Adiponectina/metabolismo , Estudos Prospectivos , Sobrepeso/complicações , Obesidade/complicações , Inflamação , Sepse/complicações
4.
Front Immunol ; 13: 1027122, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36405747

RESUMO

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.


Assuntos
COVID-19 , Proteômica , Humanos , Proteoma , SARS-CoV-2 , Biomarcadores
5.
Cell Rep Med ; 3(11): 100817, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36384100

RESUMO

The state of immune activation may guide targeted immunotherapy in sepsis. In a double-blind, double-dummy randomized clinical study, 240 patients with sepsis due to lung infection, bacteremia, or acute cholangitis were subjected to measurements of serum ferritin and HLA-DR/CD14. Patients with macrophage activation-like syndrome (MALS) or immunoparalysis were randomized to treatment with anakinra or recombinant interferon-gamma or placebo. Twenty-eight-day mortality was the primary endpoint; sepsis immune classification was the secondary endpoint. Using ferritin >4,420 ng/mL and <5,000 HLA-DR receptors/monocytes as biomarkers, patients were classified into MALS (20.0%), immunoparalysis (42.9%), and intermediate (37.1%). Mortality was 79.1%, 66.9%, and 41.6%, respectively. Survival after 7 days with SOFA score decrease was achieved in 42.9% of patients of the immunotherapy arm and 10.0% of the placebo arm (p = 0.042). Three independent immune classification strata are recognized in sepsis. MALS and immunoparalysis are proposed as stratification for personalized adjuvant immunotherapy. Clinicaltrials.gov registration NCT03332225.


Assuntos
Síndrome de Ativação Macrofágica , Sepse , Humanos , Sepse/terapia , Antígenos HLA-DR/metabolismo , Síndrome de Ativação Macrofágica/complicações , Ferritinas/uso terapêutico , Imunoterapia
6.
Nat Commun ; 13(1): 6149, 2022 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-36257966

RESUMO

Myeloid cells, crucial players in antitumoral defense, are affected by tumor-derived factors and treatment. The role of myeloid cells and their progenitors prior to tumor infiltration is poorly understood. Here we show single-cell transcriptomics and functional analyses of the myeloid cell lineage in patients with non-medullary thyroid carcinoma (TC) and multinodular goiter, before and after treatment with radioactive iodine compared to healthy controls. Integrative data analysis indicates that monocytes of TC patients have transcriptional upregulation of antigen presentation, reduced cytokine production capacity, and overproduction of reactive oxygen species. Interestingly, these cancer-related pathological changes are partially removed upon treatment. In bone marrow, TC patients tend to shift from myelopoiesis towards lymphopoiesis, reflected in transcriptional differences. Taken together, distinct transcriptional and functional changes in myeloid cells arise before their infiltration of the tumor and are already initiated in bone marrow, which suggests an active role in forming the tumor immune microenvironment.


Assuntos
Radioisótopos do Iodo , Neoplasias da Glândula Tireoide , Humanos , Espécies Reativas de Oxigênio , Neoplasias da Glândula Tireoide/genética , Células Mieloides/fisiologia , Mielopoese , Citocinas , Microambiente Tumoral
7.
BMC Infect Dis ; 22(1): 778, 2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36209073

RESUMO

BACKGROUND: Sepsis is a heterogeneous syndrome due to a variable range of dysregulated processes in the host immune response. Efforts are made to stratify patients for personalized immune-based treatments and better prognostic prediction. Using gene expression data, different inflammatory profiles have been identified. However, it remains unknown whether these endotypes mirror inflammatory proteome profiling, which would be more feasible to assess in clinical practice. We aim to identify different inflammatory endotypes based on circulating proteins in a cohort of moderately ill patients with severe infection (Sepsis-2 criteria). METHODS: In this prospective study, 92 inflammatory plasma markers were profiled using a targeted proteome platform and compared between patients with severe infection (Sepsis-2 criteria) and healthy controls. To identify endotypes with different inflammatory profiles, we performed hierarchical clustering of patients based on the differentially expressed proteins, followed by clinical and demographic characterization of the observed endotypes. RESULTS: In a cohort of 167 patients with severe infection and 192 healthy individuals, we found 62 differentially expressed proteins. Inflammatory proteins such as TNFSF14, OSM, CCL23, IL-6, and HGF were upregulated, while TRANCE, DNER and SCF were downregulated in patients. Unsupervised clustering identified two different inflammatory profiles. One endotype showed significantly higher inflammatory protein abundance, and patients with this endotype were older and showed lower lymphocyte counts compared to the low inflammatory endotype. CONCLUSIONS: By identifying endotypes based on inflammatory proteins in moderately ill patients with severe infection, our study suggests that inflammatory proteome profiling can be useful for patient stratification.


Assuntos
Proteoma , Sepse , Biomarcadores , Humanos , Interleucina-6 , Estudos Prospectivos , Sepse/genética
8.
Nature ; 609(7928): 801-807, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901960

RESUMO

Anorexia and fasting are host adaptations to acute infection, and induce a metabolic switch towards ketogenesis and the production of ketone bodies, including ß-hydroxybutyrate (BHB)1-6. However, whether ketogenesis metabolically influences the immune response in pulmonary infections remains unclear. Here we show that the production of BHB is impaired in individuals with SARS-CoV-2-induced acute respiratory distress syndrome (ARDS) but not in those with  influenza-induced ARDS. We found that BHB promotes both the survival of and the production of interferon-γ by CD4+ T cells. Applying a metabolic-tracing analysis, we established that BHB provides an alternative carbon source to fuel oxidative phosphorylation (OXPHOS) and the production of bioenergetic amino acids and glutathione, which is important for maintaining the redox balance. T cells from patients with SARS-CoV-2-induced ARDS were exhausted and skewed towards glycolysis, but could be metabolically reprogrammed by BHB to perform OXPHOS, thereby increasing their functionality. Finally, we show in mice that a ketogenic diet and the delivery of BHB as a ketone ester drink restores CD4+ T cell metabolism and function in severe respiratory infections, ultimately reducing the mortality of mice infected with SARS-CoV-2. Altogether, our data reveal that BHB is an alternative source of carbon that promotes T cell responses in pulmonary viral infections, and highlight impaired ketogenesis as a potential confounding factor in severe COVID-19.


Assuntos
COVID-19 , Metabolismo Energético , Cetonas , Síndrome do Desconforto Respiratório , SARS-CoV-2 , Linfócitos T , Ácido 3-Hidroxibutírico/biossíntese , Ácido 3-Hidroxibutírico/metabolismo , Aminoácidos/biossíntese , Aminoácidos/metabolismo , Animais , COVID-19/complicações , COVID-19/imunologia , COVID-19/patologia , Dieta Cetogênica , Ésteres/metabolismo , Glutationa/biossíntese , Glutationa/metabolismo , Glicólise , Interferon gama/biossíntese , Corpos Cetônicos/metabolismo , Cetonas/metabolismo , Camundongos , Orthomyxoviridae/patogenicidade , Oxirredução , Fosforilação Oxidativa , Síndrome do Desconforto Respiratório/complicações , Síndrome do Desconforto Respiratório/imunologia , Síndrome do Desconforto Respiratório/metabolismo , Síndrome do Desconforto Respiratório/virologia , SARS-CoV-2/patogenicidade , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linfócitos T/patologia
9.
Front Immunol ; 13: 859387, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35634344

RESUMO

Recent genome-wide association studies (GWASs) of COVID-19 patients of European ancestry have identified genetic loci significantly associated with disease severity. Here, we employed the detailed clinical, immunological and multi-omics dataset of the Human Functional Genomics Project (HFGP) to explore the physiological significance of the host genetic variants that influence susceptibility to severe COVID-19. A genomics investigation intersected with functional characterization of individuals with high genetic risk for severe COVID-19 susceptibility identified several major patterns: i. a large impact of genetically determined innate immune responses in COVID-19, with ii. increased susceptibility for severe disease in individuals with defective cytokine production; iii. genetic susceptibility related to ABO blood groups is probably mediated through the von Willebrand factor (VWF) and endothelial dysfunction. We further validated these identified associations at transcript and protein levels by using independent disease cohorts. These insights allow a physiological understanding of genetic susceptibility to severe COVID-19, and indicate pathways that could be targeted for prevention and therapy.


Assuntos
COVID-19 , Estudo de Associação Genômica Ampla , COVID-19/genética , Predisposição Genética para Doença , Humanos , Imunidade , Fator de von Willebrand/genética , Fator de von Willebrand/metabolismo
10.
J Intensive Care ; 10(1): 13, 2022 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-35264246

RESUMO

BACKGROUND: Sepsis is a life-threatening organ dysfunction. A fast diagnosis is crucial for patient management. Proteins that are synthesized during the inflammatory response can be used as biomarkers, helping in a rapid clinical assessment or an early diagnosis of infection. The aim of this study was to identify biomarkers of inflammation for the diagnosis and prognosis of infection in patients with suspected sepsis. METHODS: In total 406 episodes were included in a prospective cohort study. Plasma was collected from all patients with suspected sepsis, for whom blood cultures were drawn, in the emergency department (ED), the department of infectious diseases, or the haemodialysis unit on the first day of a new episode. Samples were analysed using a 92-plex proteomic panel based on a proximity extension assay with oligonucleotide-labelled antibody probe pairs (OLink, Uppsala, Sweden). Supervised and unsupervised differential expression analyses and pathway enrichment analyses were performed to search for inflammatory proteins that were different between patients with viral or bacterial sepsis and between patients with worse or less severe outcome. RESULTS: Supervised differential expression analysis revealed 21 proteins that were significantly lower in circulation of patients with viral infections compared to patients with bacterial infections. More strongly, higher expression levels were observed for 38 proteins in patients with high SOFA scores (> 4), and for 21 proteins in patients with worse outcome. These proteins are mostly involved in pathways known to be activated early in the inflammatory response. Unsupervised, hierarchical clustering confirmed that inflammatory response was more strongly related to disease severity than to aetiology. CONCLUSION: Several differentially expressed inflammatory proteins were identified that could be used as biomarkers for sepsis. These proteins are mostly related to disease severity. Within the setting of an emergency department, they could be used for outcome prediction, patient monitoring, and directing diagnostics. TRAIL REGISTRATION NUMBER: clinicaltrial.gov identifier NCT03841162.

11.
Biosci Rep ; 41(7)2021 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-34195785

RESUMO

Patients with sepsis display increased concentrations of sTREM-1 (soluble Triggering Receptor Expressed on Myeloid cells 1), and a phase II clinical trial focusing on TREM-1 modulation is ongoing. We investigated whether sTREM-1 circulating concentrations are associated with the outcome of patients with coronavirus disease 2019 (COVID-19) to assess the role of this pathway in COVID-19. This observational study was performed in two independent cohorts of patients with COVID-19. Plasma concentrations of sTREM-1 were assessed after ICU admission (pilot cohort) or after COVID-19 diagnosis (validation cohort). Routine laboratory and clinical parameters were collected from electronic patient files. Results showed sTREM-1 plasma concentrations were significantly elevated in patients with COVID-19 (161 [129-196] pg/ml) compared to healthy controls (104 [75-124] pg/ml; P<0.001). Patients with severe COVID-19 needing ICU admission displayed even higher sTREM-1 concentrations compared to less severely ill COVID-19 patients receiving clinical ward-based care (235 [176-319] pg/ml and 195 [139-283] pg/ml, respectively, P = 0.017). In addition, higher sTREM-1 plasma concentrations were observed in patients who did not survive the infection (326 [207-445] pg/ml) compared to survivors (199 [142-278] pg/ml, P<0.001). Survival analyses indicated that patients with higher sTREM-1 concentrations are at higher risk for death (hazard ratio = 3.3, 95%CI: 1.4-7.8). In conclusion, plasma sTREM-1 concentrations are elevated in patients with COVID-19, relate to disease severity, and discriminate between survivors and non-survivors. This suggests that the TREM-1 pathway is involved in the inflammatory reaction and the disease course of COVID-19, and therefore may be considered as a therapeutic target in severely ill patients with COVID-19.


Assuntos
COVID-19/diagnóstico , Receptor Gatilho 1 Expresso em Células Mieloides/sangue , Idoso , Biomarcadores/sangue , COVID-19/sangue , COVID-19/mortalidade , COVID-19/virologia , Estudos de Casos e Controles , Feminino , Voluntários Saudáveis , Mortalidade Hospitalar , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Medição de Risco/métodos , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Análise de Sobrevida
12.
STAR Protoc ; 2(1): 100365, 2021 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-33718890

RESUMO

A growing number of studies show that innate immune cells can undergo functional reprogramming, facilitating a faster and enhanced response to heterologous secondary stimuli. This concept has been termed "trained immunity." We outline here a protocol to recapitulate this in vitro using adherent monocytes from consecutive isolation of peripheral blood mononuclear cells. The induction of trained immunity and the associated functional reprogramming of monocytes is described in detail using ß-glucan (from Candida albicans) and Bacillus Calmette-Guérin as examples. For complete details on the use and execution of this protocol, please refer to Repnik et al. (2003) and Bekkering et al. (2016).


Assuntos
Técnicas de Reprogramação Celular/métodos , Imunidade Inata/imunologia , Reprogramação Celular/fisiologia , Citocinas/imunologia , Humanos , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/fisiologia , Monócitos/fisiologia , Mycobacterium bovis/fisiologia , beta-Glucanas/farmacologia
13.
J Clin Endocrinol Metab ; 106(7): 1994-2009, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-33713408

RESUMO

CONTEXT: Lymphopenia is a key feature of immune dysfunction in patients with bacterial sepsis and coronavirus disease 2019 (COVID-19) and is associated with poor clinical outcomes, but the cause is largely unknown. Severely ill patients may present with thyroid function abnormalities, so-called nonthyroidal illness syndrome, and several studies have linked thyrotropin (thyroid stimulating hormone, TSH) and the thyroid hormones thyroxine (T4) and 3,5,3'-triiodothyronine (T3) to homeostatic regulation and function of lymphocyte populations. OBJECTIVE: This work aimed to test the hypothesis that abnormal thyroid function correlates with lymphopenia in patients with severe infections. METHODS: A retrospective analysis of absolute lymphocyte counts, circulating TSH, T4, free T4 (FT4), T3, albumin, and inflammatory biomarkers was performed in 2 independent hospitalized study populations: bacterial sepsis (n = 224) and COVID-19 patients (n = 161). A subgroup analysis was performed in patients with severe lymphopenia and normal lymphocyte counts. RESULTS: Only T3 significantly correlated (ρ = 0.252) with lymphocyte counts in patients with bacterial sepsis, and lower concentrations were found in severe lymphopenic compared to nonlymphopenic patients (n = 56 per group). Severe lymphopenic COVID-19 patients (n = 17) showed significantly lower plasma concentrations of TSH, T4, FT4, and T3 compared to patients without lymphopenia (n = 18), and demonstrated significantly increased values of the inflammatory markers interleukin-6, C-reactive protein, and ferritin. Remarkably, after 1 week of follow-up, the majority (12 of 15) of COVID-19 patients showed quantitative recovery of their lymphocyte numbers, whereas TSH and thyroid hormones remained mainly disturbed. CONCLUSION: Abnormal thyroid function correlates with lymphopenia in patients with severe infections, like bacterial sepsis and COVID-19, but future studies need to establish whether a causal relationship is involved.


Assuntos
COVID-19/complicações , Síndromes do Eutireóideo Doente/diagnóstico , Linfopenia/imunologia , Sepse/complicações , Idoso , Idoso de 80 Anos ou mais , COVID-19/sangue , COVID-19/imunologia , Síndromes do Eutireóideo Doente/sangue , Síndromes do Eutireóideo Doente/imunologia , Feminino , Grécia , Humanos , Contagem de Linfócitos , Linfopenia/sangue , Linfopenia/diagnóstico , Masculino , Países Baixos , Estudos Retrospectivos , SARS-CoV-2/imunologia , Sepse/sangue , Sepse/imunologia , Hormônios Tireóideos/sangue , Hormônios Tireóideos/imunologia , Tireotropina/sangue , Tireotropina/imunologia
14.
J Infect Dis ; 223(8): 1322-1333, 2021 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-33524124

RESUMO

The clinical spectrum of COVID-19 varies and the differences in host response characterizing this variation have not been fully elucidated. COVID-19 disease severity correlates with an excessive proinflammatory immune response and profound lymphopenia. Inflammatory responses according to disease severity were explored by plasma cytokine measurements and proteomics analysis in 147 COVID-19 patients. Furthermore, peripheral blood mononuclear cell cytokine production assays and whole blood flow cytometry were performed. Results confirm a hyperinflammatory innate immune state, while highlighting hepatocyte growth factor and stem cell factor as potential biomarkers for disease severity. Clustering analysis revealed no specific inflammatory endotypes in COVID-19 patients. Functional assays revealed abrogated adaptive cytokine production (interferon-γ, interleukin-17, and interleukin-22) and prominent T-cell exhaustion in critically ill patients, whereas innate immune responses were intact or hyperresponsive. Collectively, this extensive analysis provides a comprehensive insight into the pathobiology of severe to critical COVID-19 and highlights potential biomarkers of disease severity.


Assuntos
Imunidade Adaptativa/imunologia , COVID-19/imunologia , Imunidade Inata/imunologia , Idoso , Biomarcadores/sangue , COVID-19/sangue , COVID-19/virologia , Síndrome da Liberação de Citocina/sangue , Síndrome da Liberação de Citocina/imunologia , Síndrome da Liberação de Citocina/virologia , Citocinas/imunologia , Feminino , Humanos , Inflamação/sangue , Inflamação/imunologia , Inflamação/virologia , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/virologia , Linfopenia/sangue , Linfopenia/imunologia , Linfopenia/virologia , Masculino , Pessoa de Meia-Idade , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
15.
Int J Obes (Lond) ; 45(3): 687-694, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33495522

RESUMO

BACKGROUND/OBJECTIVES: Obesity appears to be an independent risk factor for ICU admission and a severe disease course in COVID-19 patients. An aberrant inflammatory response and impaired respiratory function have been suggested as underlying mechanisms. We investigated whether obesity is associated with differences in inflammatory, respiratory, and clinical outcome parameters in critically ill COVID-19 patients. SUBJECTS/METHODS: Sixty-seven COVID-19 ICU patients were divided into obese (BMI ≥ 30 kg/m2, n = 18, 72% class I obesity, 28% class II obesity) and non-obese (BMI < 30 kg/m2, n = 49) groups. Concentrations of circulating interleukin (IL)-6, IL-8, IL-10, tumor necrosis factor alpha (TNF-α), interferon gamma (IFN-γ), interferon gamma-induced protein (IP)-10, monocyte chemoattractant protein (MCP)-1, and IL-1 receptor antagonist (RA) were determined from ICU admission until 10 days afterward, and routine laboratory and clinical parameters were collected. RESULTS: BMI was 32.6 [31.2-34.5] and 26.0 [24.4-27.7] kg/m2 in the obese and non-obese group, respectively. Apart from temperature, which was significantly lower in obese patients (38.1 [36.9-38.9] vs. 38.7 [38.0 -39.5] °C, p = 0.02), there were no between-group differences on ICU admission. Plasma cytokine concentrations declined over time (p < 0.05 for all), but no differences between obese and non-obese patients were observed. Also, BMI did not correlate with the cytokine response (IL-6 r = 0.09, p = 0.61, TNF-α r = 0.03, p = 0.99, IP-10 r = 0.28, p = 0.11). The kinetics of clinical inflammatory parameters and respiratory mechanics were also similar in both groups. Finally, no differences in time on ventilator, ICU length of stay or 40-day mortality between obese and non-obese patients were apparent. CONCLUSIONS: In COVID-19 patients requiring mechanical ventilation in the ICU, a higher BMI is not related to a different immunological response, unfavorable respiratory mechanics, or impaired outcome.


Assuntos
COVID-19 , Obesidade/complicações , Idoso , Índice de Massa Corporal , COVID-19/complicações , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/mortalidade , Estado Terminal , Citocinas/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos
16.
J Infect Dis ; 223(2): 214-224, 2021 02 03.
Artigo em Inglês | MEDLINE | ID: mdl-33038254

RESUMO

BACKGROUND: Excessive activation of immune responses in coronavirus disease 2019 (COVID-19) is considered to be related to disease severity, complications, and mortality rate. The complement system is an important component of innate immunity and can stimulate inflammation, but its role in COVID-19 is unknown. METHODS: A prospective, longitudinal, single center study was performed in hospitalized patients with COVID-19. Plasma concentrations of complement factors C3a, C3c, and terminal complement complex (TCC) were assessed at baseline and during hospital admission. In parallel, routine laboratory and clinical parameters were collected from medical files and analyzed. RESULTS: Complement factors C3a, C3c, and TCC were significantly increased in plasma of patients with COVID-19 compared with healthy controls (P < .05). These complement factors were especially elevated in intensive care unit patients during the entire disease course (P < .005 for C3a and TCC). More intense complement activation was observed in patients who died and in those with thromboembolic events. CONCLUSIONS: Patients with COVID-19 demonstrate activation of the complement system, which is related to disease severity. This pathway may be involved in the dysregulated proinflammatory response associated with increased mortality rate and thromboembolic complications. Components of the complement system might have potential as prognostic markers for disease severity and as therapeutic targets in COVID-19.


Assuntos
COVID-19/imunologia , Ativação do Complemento/imunologia , SARS-CoV-2/imunologia , Idoso , Idoso de 80 Anos ou mais , COVID-19/mortalidade , Complemento C3c/imunologia , Citocinas/sangue , Progressão da Doença , Feminino , Humanos , Imunidade Inata , Inflamação/imunologia , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Mortalidade , Países Baixos/epidemiologia , Estudos Prospectivos , Síndrome do Desconforto Respiratório/imunologia , Índice de Gravidade de Doença
17.
Crit Care ; 24(1): 688, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33302991

RESUMO

BACKGROUND: A subset of critically ill COVID-19 patients develop a hyperinflammatory state. Anakinra, a recombinant interleukin-1 receptor antagonist, is known to be effective in several hyperinflammatory diseases. We investigated the effects of anakinra on inflammatory parameters and clinical outcomes in critically ill, mechanically ventilated COVID-19 patients with clinical features of hyperinflammation. METHODS: In this prospective cohort study, 21 critically ill COVID-19 patients treated with anakinra were compared to a group of standard care. Serial data of clinical inflammatory parameters and concentrations of multiple circulating cytokines were determined and aligned on start day of anakinra in the treatment group, and median start day of anakinra in the control group. Analysis was performed for day - 10 to + 10 relative to alignment day. Clinical outcomes were analyzed during 28 days. Additionally, three sensitivity analyses were performed: (1) using propensity score-matched groups, (2) selecting patients who did not receive corticosteroids, and (3) using a subset of the control group aimed to match the criteria (fever, elevated ferritin) for starting anakinra treatment. RESULTS: Baseline patient characteristics and clinical parameters on ICU admission were similar between groups. As a consequence of bias by indication, plasma levels of aspartate aminotransferase (ASAT) (p = 0.0002), ferritin (p = 0.009), and temperature (p = 0.001) were significantly higher in the anakinra group on alignment day. Following treatment, no relevant differences in kinetics of circulating cytokines were observed between both groups. Decreases of clinical parameters, including temperature (p = 0.03), white blood cell counts (p = 0.02), and plasma levels of ferritin (p = 0.003), procalcitonin (p = 0.001), creatinine (p = 0.01), and bilirubin (p = 0.007), were more pronounced in the anakinra group. No differences in duration of mechanical ventilation or ICU length of stay were observed between groups. Sensitivity analyses confirmed these results. CONCLUSIONS: Anakinra is effective in reducing clinical signs of hyperinflammation in critically ill COVID-19 patients. A randomized controlled trial is warranted to draw conclusion about the effects of anakinra on clinical outcomes.


Assuntos
Tratamento Farmacológico da COVID-19 , Proteína Antagonista do Receptor de Interleucina 1/uso terapêutico , Receptores de Interleucina-1/antagonistas & inibidores , Idoso , COVID-19/fisiopatologia , Estudos de Coortes , Estado Terminal/terapia , Feminino , Humanos , Proteína Antagonista do Receptor de Interleucina 1/efeitos adversos , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Masculino , Pessoa de Meia-Idade , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Estudos Prospectivos , Receptores de Interleucina-1/uso terapêutico , Estatísticas não Paramétricas
18.
Front Immunol ; 11: 575047, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33123154

RESUMO

Reports suggest a role of endothelial dysfunction and loss of endothelial barrier function in COVID-19. It is well established that the endothelial glycocalyx-degrading enzyme heparanase contributes to vascular leakage and inflammation. Low molecular weight heparins (LMWH) serve as an inhibitor of heparanase. We hypothesize that heparanase contributes to the pathogenesis of COVID-19, and that heparanase may be inhibited by LMWH. To test this hypothesis, heparanase activity and heparan sulfate levels were measured in plasma of healthy controls (n = 10) and COVID-19 patients (n = 48). Plasma heparanase activity and heparan sulfate levels were significantly elevated in COVID-19 patients. Heparanase activity was associated with disease severity including the need for intensive care, lactate dehydrogenase levels, and creatinine levels. Use of prophylactic LMWH in non-ICU patients was associated with a reduced heparanase activity. Since there is no other clinically applied heparanase inhibitor currently available, therapeutic treatment of COVID-19 patients with low molecular weight heparins should be explored.


Assuntos
Endotélio/patologia , Glucuronidase/antagonistas & inibidores , Glucuronidase/sangue , Antagonistas de Heparina/uso terapêutico , Heparina de Baixo Peso Molecular/uso terapêutico , Junções Íntimas/patologia , Idoso , Betacoronavirus , COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/patologia , Creatinina/sangue , Cuidados Críticos , Estudos Transversais , Feminino , Glucuronidase/metabolismo , Heparitina Sulfato/sangue , Humanos , Interleucina-6/sangue , L-Lactato Desidrogenase/sangue , Masculino , Pessoa de Meia-Idade , Pandemias , Pneumonia Viral/imunologia , Pneumonia Viral/patologia , SARS-CoV-2
19.
Biochem Soc Trans ; 48(1): 1-14, 2020 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-32049312

RESUMO

Sepsis is characterized as a life-threatening organ dysfunction syndrome that is caused by a dysregulated host response to infection. The main etiological causes of sepsis are bacterial, fungal, and viral infections. Last decades clinical and preclinical research contributed to a better understanding of pathophysiology of sepsis. The dysregulated host response in sepsis is complex, with both pathogen-related factors contributing to disease, as well as immune-cell mediated inflammatory responses that can lead to adverse outcomes in early or advanced stages of disease. Due to its heterogenous nature, clinical diagnosis remains challenging and sepsis-specific treatment options are still lacking. Classification and early identification of patient subgroups may aid clinical decisions and improve outcome in sepsis patients. The initial clinical presentation is rather similar in sepsis of different etiologies, however, inflammatory profiles may be able to distinguish between different etiologies of infections. In this review, we summarize the role and the discriminating potency of host-derived inflammatory biomarkers in the context of the main etiological types of sepsis.


Assuntos
Proteínas de Fase Aguda/metabolismo , Adipocinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Citocinas/metabolismo , Sepse/microbiologia , Sepse/virologia , Adulto , Biomarcadores/metabolismo , Infecções Comunitárias Adquiridas/complicações , Infecção Hospitalar/complicações , Humanos , Imunidade Inata , Inflamação/microbiologia , Inflamação/virologia
20.
J Leukoc Biol ; 106(1): 11-25, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31169935

RESUMO

Secondary infections are a major complication of sepsis and associated with a compromised immune state, called sepsis-induced immunoparalysis. Molecular mechanisms causing immunoparalysis remain unclear; however, changes in cellular metabolism of leukocytes have been linked to immunoparalysis. We investigated the relation of metabolic changes to antimicrobial monocyte functions in endotoxin-induced immunotolerance, as a model for sepsis-induced immunoparalysis. In this study, immunotolerance was induced in healthy males by intravenous endotoxin (2 ng/kg, derived from Escherichia coli O:113) administration. Before and after induction of immunotolerance, circulating CD14+ monocytes were isolated and assessed for antimicrobial functions, including cytokine production, oxidative burst, and microbial (Candida albicans) killing capacity, as well metabolic responses to ex vivo stimulation. Next, the effects of altered cellular metabolism on monocyte functions were validated in vitro. Ex vivo lipopolysaccharide stimulation induced an extensive rewiring of metabolism in naive monocytes. In contrast, endotoxin-induced immunotolerant monocytes showed no metabolic plasticity, as they were unable to adapt their metabolism or mount cytokine and oxidative responses. Validation experiments showed that modulation of metabolic pathways, affected by immunotolerance, influenced monocyte cytokine production, oxidative burst, and microbial (C. albicans) killing in naive monocytes. Collectively, these data demonstrate that immunotolerant monocytes are characterized by a loss of metabolic plasticity and these metabolic defects impact antimicrobial monocyte immune functions. Further, these findings support that the changed cellular metabolism of immunotolerant monocytes might reveal novel therapeutic targets to reverse sepsis-induced immunoparalysis.


Assuntos
Tolerância Imunológica/efeitos dos fármacos , Monócitos/metabolismo , Explosão Respiratória , Adolescente , Adulto , Candida/imunologia , Citocinas/biossíntese , Glicólise , Humanos , Lipopolissacarídeos/farmacologia , Masculino , Monócitos/efeitos dos fármacos , Monócitos/imunologia , Sepse/imunologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...