Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 2(9): 2515-20, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20738090

RESUMO

Polymers in space may be subjected to a barrage of incident atoms, photons, and/or ions. Atomic layer deposition (ALD) techniques can produce films that mitigate many of the current challenges for space polymers. We have studied the efficacy of various ALD coatings to protect Kapton polyimide, FEP Teflon, and poly(methyl methacrylate) films from atomic-oxygen and vacuum ultraviolet (VUV) attack. Atomic-oxygen and VUV studies were conducted with the use of a laser-detonation source for hyperthermal O atoms and a D2 lamp as a source of VUV light. These studies used a quartz crystal microbalance (QCM) to monitor mass loss in situ, as well as surface profilometry and scanning electron microscopy to study the surface recession and morphology changes ex situ. Al2O3 ALD coatings protected the underlying substrates from atomic-oxygen attack, and the addition of TiO2 coatings protected the substrates from VUV-induced damage. The results indicate that ALD coatings can simultaneously protect polymers from oxygen-atom erosion and VUV radiation damage.


Assuntos
Meio Ambiente Extraterreno , Polímeros/química , Polímeros/efeitos da radiação , Teste de Materiais , Raios Ultravioleta
3.
Inorg Chem ; 36(21): 4860-4865, 1997 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-11670166

RESUMO

3,5-Di-tert-butyl-1,2-semiquinonate (3,5-DBSQ) complexes of Co(II), Cu(II), and Zn(II) have been prepared that contain the hydrotris(cumenylmethyl-pyrazolyl)borate (Tp(Cum,Me)) coligand. Tp(Cum,Me)Zn(3,5-DBSQ) and Tp(Cum,Me)Cu(3,5-DBSQ) were prepared by treating the parent hydroxide, Tp(Cum,Me)M(OH), M = Cu and Zn, with 3,5-di-tert-butylcatechol. Tp(Cum,Me)Co(3,5-DBSQ) was prepared by a reaction between (Tp(Cum,Me))(2)Co and 3,5-DBCat. The identity of (Tp(Cum,Me))(2)Co in this reaction was confirmed by a structure determination [(Tp(Cum,Me))(2)Co: orthorhombic, Pbcn, a = 17.7189(4) Å, b = 17.4806(3) Å, c = 25.7123(6) Å, V = 7964.1(3) Å(3), Z = 4, R(F) = 0.054]. Intersecting cumenyl substituents of the pyrazolylborate ligand encapsulate the Co(II) ion. Structural characterization on all three members of the Tp(Cum,Me)M(3,5-DBSQ) series has been carried out. The complexes of Co(II) and Zn(II) are isomorphous and isostructural [Tp(Cum,Me)Co(3,5-DBSQ): triclinic, P&onemacr;, a = 14.4631(2) Å, b = 18.5438(3) Å, c = 21.6142(2) Å, alpha = 79.8430(10) degrees, beta = 90.0900(10) degrees, gamma = 84.9900(10) degrees, V = 5683.45(13) Å(3), Z = 4, R(F) = 0.072; Tp(Cum,Me)Zn(3,5-DBSQ), triclinic, P&onemacr;, a = 14.261(3) Å, b = 18.760(7) Å, c = 21.710(4) Å, alpha = 80.049(12) degrees, beta = 89.853(8) degrees, gamma = 85.542(12) degrees, V = 5703(3) Å(3), Z = 4, R(F) = 0.064]. Tp(Cum,Me)Cu(3,5-DBSQ) [monoclinic, P2(1)/c, a = 19.3081(3) Å, b = 13.0291(2) Å, c = 21.4783(4) Å, beta = 102.8420(10) degrees, V = 5268.1(2) Å(3), Z = 4, R(F) = 0.071] has a distorted square pyramidal structure, the complexes of Zn and Co have structures that are closer to a trigonal bipyramid. Parent catecholate complexes of all three metals are unusually stable in air but undergo slow oxidation in solution to give the semiquinonate products characterized structurally. Copper(II) and SQ spins of Tp(Cum,Me)Cu(3,5-DBSQ) are located in orthogonal orbitals, and the complex has a S = 1 spin state. The charge distribution in Tp(Cum,Me)Co(3,5-DBSQ) is Co(II)-SQ, rather than the more common Co(III)-Cat, due to surprisingly weak donation by the Tp(Cum,Me) nitrogens.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...