Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Imaging Radiat Oncol ; 23: 74-79, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35833200

RESUMO

Background and purpose: In (ultra-)hypofractionation, the contribution of intrafraction motion to treatment accuracy becomes increasingly important. Our purpose was to evaluate intrafraction motion and resulting geometric uncertainties for breast tumor (bed) and individual axillary lymph nodes, and to compare prone and supine position for the breast tumor (bed). Materials and methods: During 1-3 min of free breathing, we acquired transverse/sagittal interleaved 1.5 T cine magnetic resonance imaging (MRI) of the breast tumor (bed) in prone and supine position and coronal/sagittal cine MRI of individual axillary lymph nodes in supine position. A total of 31 prone and 23 supine breast cine MRI (in 23 women) and 52 lymph node cine MRI (in 24 women) were included. Maximum displacement, breathing amplitude, and drift were analyzed using deformable image registration. Geometric uncertainties were calculated for all displacements and for breathing motion only. Results: Median maximum displacements (range over the three orthogonal orientations) were 1.1-1.5 mm for the breast tumor (bed) in prone and 1.8-3.0 mm in supine position, and 2.2-2.4 mm for lymph nodes. Maximum displacements were significantly smaller in prone than in supine position, mainly due to smaller breathing amplitude: 0.6-0.9 mm in prone vs. 0.9-1.4 mm in supine. Systematic and random uncertainties were 0.1-0.4 mm in prone position and 0.2-0.8 mm in supine position for the tumor (bed), and 0.4-0.6 mm for the lymph nodes. Conclusion: Intrafraction motion of breast tumor (bed) and individual lymph nodes was small. Motion of the tumor (bed) was smaller in prone than in supine position.

2.
Adv Radiat Oncol ; 7(2): 100854, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387418

RESUMO

Purpose: We aimed to evaluate changes in dynamic contrast-enhanced (DCE) and diffusion-weighted (DW) magnetic resonance imaging (MRI) scans acquired before and after single-dose ablative neoadjuvant partial breast irradiation (NA-PBI), and explore the relation between semiquantitative MRI parameters and radiologic and pathologic responses. Methods and Materials: We analyzed 3.0T DCE and DW-MRI of 36 patients with low-risk breast cancer who were treated with single-dose NA-PBI, followed by breast-conserving surgery 6 or 8 months later. MRI was acquired before NA-PBI and 1 week, 2, 4, and 6 months after NA-PBI. Breast radiologists assessed the radiologic response and breast pathologists scored the pathologic response after surgery. Patients were grouped as either pathologic responders or nonresponders (<10% vs ≥10% residual tumor cells). The semiquantitative MRI parameters evaluated were time to enhancement (TTE), 1-minute relative enhancement (RE1min), percentage of enhancing voxels (%EV), distribution of washout curve types, and apparent diffusion coefficient (ADC). Results: In general, the enhancement increased 1 week after NA-PBI (baseline vs 1 week median - TTE: 15s vs 10s; RE1min: 161% vs 197%; %EV: 47% vs 67%) and decreased from 2 months onward (6 months median - TTE: 25s; RE1min: 86%; %EV: 12%). Median ADC increased from 0.83 × 10-3 mm2/s at baseline to 1.28 × 10-3 mm2/s at 6 months. TTE, RE1min, and %EV showed the most potential to differentiate between radiologic responses, and TTE, RE1min, and ADC between pathologic responses. Conclusions: Semiquantitative analyses of DCE and DW-MRI showed changes in relative enhancement and ADC 1 week after NA-PBI, indicating acute inflammation, followed by changes indicating tumor regression from 2 to 6 months after radiation therapy. A relation between the MRI parameters and radiologic and pathologic responses could not be proven in this exploratory study.

3.
Radiother Oncol ; 165: 193-199, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34774649

RESUMO

BACKGROUND AND PURPOSE: Accelerated partial breast irradiation (APBI) may benefit from the MR-Linac for target definition, patient setup, and motion monitoring. In this planning study, we investigated whether prone or supine position is dosimetrically beneficial for APBI on an MR-Linac and we evaluated patient comfort. MATERIALS AND METHODS: Twenty-patients (9 postoperative, 11 preoperative) with a DCIS or breast tumor <3 cm underwent 1.5 T MRI in prone and supine position. The tumor or tumor bed was delineated as GTV and a 2 cm CTV-margin and 0.5 cm PTV-margin were added. 1.5 T MR-Linac treatment plans (5 × 5.2 Gy) with 11 beams were created for both positions in each patient. We evaluated the number of plans that achieved the planning constraints and performed a dosimetric comparison between prone and supine position using the Wilcoxon signed-rank test (p-value <0.01 for significance). Patient experience during scanning was evaluated with a questionnaire. RESULTS: All 40 plans met the target coverage and OAR constraints, regardless of position. Heart Dmean was not significantly different (1.07 vs. 0.79 Gy, p-value: 0.027). V5Gy to the ipsilateral lung (4.4% vs. 9.8% median, p-value 0.009) and estimated delivery time (362 vs. 392 s, p-value: 0.003) were significantly lower for prone position. PTV coverage and dose to other OAR were comparable between positions. The majority of patients (13/20) preferred supine position. CONCLUSION: APBI on the MR-Linac is dosimetrically feasible in prone and supine position. Mean heart dose was similar in both positions. Ipsilateral lung V5Gy was lower in prone position.


Assuntos
Neoplasias da Mama , Planejamento da Radioterapia Assistida por Computador , Neoplasias da Mama/radioterapia , Feminino , Humanos , Imageamento por Ressonância Magnética , Decúbito Ventral , Dosagem Radioterapêutica , Decúbito Dorsal
4.
Front Oncol ; 10: 1107, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32850318

RESUMO

Current research in radiotherapy (RT) for breast cancer is evaluating neoadjuvant as opposed to adjuvant partial breast irradiation (PBI) with the aim of reducing the volume of breast tissue irradiated and therefore the risk of late treatment-related toxicity. The development of magnetic resonance (MR)-guided RT, including dedicated MR-guided RT systems [hybrid machines combining an MR scanner with a linear accelerator (MR-linac) or 60Co sources], could potentially reduce the irradiated volume even further by improving tumour visibility before and during each RT treatment. In this position paper, we discuss MR guidance in relation to each step of the breast RT planning and treatment pathway, focusing on the application of MR-guided RT to neoadjuvant PBI.

5.
Pract Radiat Oncol ; 10(6): e466-e474, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32315784

RESUMO

PURPOSE: Our purpose was to present and evaluate expert consensus on contouring primary breast tumors on magnetic resonance imaging (MRI) in the setting of neoadjuvant partial breast irradiation in trials. METHODS AND MATERIALS: Expert consensus on contouring guidelines for target definition of primary breast tumors on contrast-enhanced MRI in trials was developed by an international team of experienced breast radiation oncologists and a dedicated breast radiologist during 3 meetings. At the first meeting, draft guidelines were developed through discussing and contouring 2 cases. At the second meeting 6 breast radiation oncologists delineated gross tumor volume (GTV) in 10 patients with early-stage breast cancer (cT1N0) according to draft guidelines. GTV was expanded isotropically (20 mm) to generate clinical target volume (CTV), excluding skin and chest wall. Delineations were reviewed for disagreement and guidelines were clarified accordingly. At the third meeting 5 radiation oncologists redelineated 6 cases using consensus-based guidelines. Interobserver variation of GTV and CTV was assessed using generalized conformity index (CI). CI was calculated as the sum of volumes each pair of observers agreed upon, divided by the sum of encompassing volumes for each pair of observers. RESULTS: For the 2 delineation sessions combined, mean GTV ranged between 0.19 and 2.44 cm3, CI for GTV ranged between 0.28 and 0.77, and CI for CTV between 0.77 and 0.94. The largest interobserver variation in GTV delineations was observed in cases with extended tumor spiculae, blood vessels near or markers within the tumor, or with increased enhancement of glandular breast tissue. Consensus-based guidelines stated to delineate all visible tumors on contrast enhanced-MRI scan 1 to 2 minutes after contrast injection and if a marker was inserted in the tumor to include this. CONCLUSIONS: Expert-based consensus on contouring primary breast tumors on MRI in trials has been reached. This resulted in low interobserver variation for CTV in the context of a uniform 20 mm GTV to CTV expansion margin.


Assuntos
Neoplasias da Mama , Terapia Neoadjuvante , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/radioterapia , Consenso , Humanos , Imageamento por Ressonância Magnética , Variações Dependentes do Observador , Planejamento da Radioterapia Assistida por Computador , Carga Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...