Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
DNA Repair (Amst) ; 63: 25-38, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29414051

RESUMO

Repair of SPO11-dependent DNA double-strand breaks (DSBs) via homologous recombination (HR) is essential for stable homologous chromosome pairing and synapsis during meiotic prophase. Here, we induced radiation-induced DSBs to study meiotic recombination and homologous chromosome pairing in mouse meiocytes in the absence of SPO11 activity (Spo11YF/YF model), and in the absence of both SPO11 and HORMAD1 (Spo11/Hormad1 dko). Within 30 min after 5 Gy irradiation of Spo11YF/YF mice, 140-160 DSB repair foci were detected, which specifically localized to the synaptonemal complex axes. Repair of radiation-induced DSBs was incomplete in Spo11YF/YF compared to Spo11+/YF meiocytes. Still, repair of exogenous DSBs promoted partial recovery of chromosome pairing and synapsis in Spo11YF/YF meiocytes. This indicates that at least part of the exogenous DSBs can be processed in an interhomolog recombination repair pathway. Interestingly, in a seperate experiment, using 3 Gy of irradiation, we observed that Spo11/Hormad1 dko spermatocytes contained fewer remaining DSB repair foci at 48 h after irradiation compared to irradiated Spo11 knockout spermatocytes. Together, these results show that recruitment of exogenous DSBs to the synaptonemal complex, in conjunction with repair of exogenous DSBs via the homologous chromosome, contributes to homology recognition. In addition, the data suggest a role for HORMAD1 in DNA repair pathway choice in mouse meiocytes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Reparo de DNA por Recombinação , Animais , Proteínas de Ciclo Celular/genética , DNA/metabolismo , DNA/efeitos da radiação , Endodesoxirribonucleases/genética , Feminino , Masculino , Meiose/efeitos da radiação , Camundongos , Camundongos Mutantes , Radiação Ionizante
2.
PLoS Genet ; 12(10): e1006358, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27716834

RESUMO

In mouse female preimplantation embryos, the paternal X chromosome (Xp) is silenced by imprinted X chromosome inactivation (iXCI). This requires production of the noncoding Xist RNA in cis, from the Xp. The Xist locus on the maternally inherited X chromosome (Xm) is refractory to activation due to the presence of an imprint. Paternal inheritance of an Xist deletion (XpΔXist) is embryonic lethal to female embryos, due to iXCI abolishment. Here, we circumvented the histone-to-protamine and protamine-to-histone transitions of the paternal genome, by fertilization of oocytes via injection of round spermatids (ROSI). This did not affect initiation of XCI in wild type female embryos. Surprisingly, ROSI using ΔXist round spermatids allowed survival of female embryos. This was accompanied by activation of the intact maternal Xist gene, initiated with delayed kinetics, around the morula stage, resulting in Xm silencing. Maternal Xist gene activation was not observed in ROSI-derived males. In addition, no Xist expression was detected in male and female morulas that developed from oocytes fertilized with mature ΔXist sperm. Finally, the expression of the X-encoded XCI-activator RNF12 was enhanced in both male (wild type) and female (wild type as well as XpΔXist) ROSI derived embryos, compared to in vivo fertilized embryos. Thus, high RNF12 levels may contribute to the specific activation of maternal Xist in XpΔXist female ROSI embryos, but upregulation of additional Xp derived factors and/or the specific epigenetic constitution of the round spermatid-derived Xp are expected to be more critical. These results illustrate the profound impact of a dysregulated paternal epigenome on embryo development, and we propose that mouse ROSI can be used as a model to study the effects of intergenerational inheritance of epigenetic marks.


Assuntos
Desenvolvimento Embrionário/genética , Herança Paterna/genética , RNA Longo não Codificante/genética , Inativação do Cromossomo X/genética , Animais , Blastocisto , Feminino , Regulação da Expressão Gênica no Desenvolvimento , Masculino , Camundongos , Oócitos/crescimento & desenvolvimento , Deleção de Sequência/genética , Espermátides/metabolismo , Cromossomo X/genética
3.
Genome Res ; 26(9): 1202-10, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27510564

RESUMO

The X and Y sex chromosomes of placental mammals show hallmarks of a tumultuous evolutionary past. The X Chromosome has a rich and conserved gene content, while the Y Chromosome has lost most of its genes. In the Transcaucasian mole vole Ellobius lutescens, the Y Chromosome including Sry has been lost, and both females and males have a 17,X diploid karyotype. Similarly, the closely related Ellobius talpinus, has a 54,XX karyotype in both females and males. Here, we report the sequencing and assembly of the E. lutescens and E. talpinus genomes. The results indicate that the loss of the Y Chromosome in E. lutescens and E. talpinus occurred in two independent events. Four functional homologs of mouse Y-Chromosomal genes were detected in both female and male E. lutescens, of which three were also detected in the E. talpinus genome. One of these is Eif2s3y, known as the only Y-derived gene that is crucial for successful male meiosis. Female and male E. lutescens can carry one and the same X Chromosome with a largely conserved gene content, including all genes known to function in X Chromosome inactivation. The availability of the genomes of these mole vole species provides unique models to study the dynamics of sex chromosome evolution.


Assuntos
Cromossomos Sexuais/genética , Processos de Determinação Sexual/genética , Cromossomo X/genética , Cromossomo Y/genética , Animais , Arvicolinae/genética , Cromossomos de Mamíferos/genética , Feminino , Cariotipagem , Masculino , Mamíferos/genética , Camundongos
4.
Mol Cell Biol ; 36(21): 2656-2667, 2016 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-27528619

RESUMO

In female mammals, X chromosome inactivation (XCI) is a key process in the control of gene dosage compensation between X-linked genes and autosomes. Xist and Tsix, two overlapping antisense-transcribed noncoding genes, are central elements of the X inactivation center (Xic) regulating XCI. Xist upregulation results in the coating of the entire X chromosome by Xist RNA in cis, whereas Tsix transcription acts as a negative regulator of Xist Here, we generated Xist and Tsix reporter mouse embryonic stem (ES) cell lines to study the genetic and dynamic regulation of these genes upon differentiation. Our results revealed mutually antagonistic roles for Tsix on Xist and vice versa and indicate the presence of semistable transcriptional states of the Xic locus predicting the outcome of XCI. These transcriptional states are instructed by the X-to-autosome ratio, directed by regulators of XCI, and can be modulated by tissue culture conditions.


Assuntos
Cromossomos de Mamíferos/genética , RNA Longo não Codificante/genética , Transcrição Gênica , Cromossomo X/genética , Alelos , Animais , Linhagem Celular , Feminino , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Genes Reporter , Loci Gênicos , Camundongos , Modelos Genéticos , RNA Longo não Codificante/metabolismo , Inativação do Cromossomo X/genética
5.
Mol Cell Biol ; 35(14): 2436-47, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25963662

RESUMO

Genome-wide gene expression studies have indicated that the eukaryotic genome contains many gene pairs showing overlapping sense and antisense transcription. Regulation of these coding and/or noncoding gene pairs involves intricate regulatory mechanisms. In the present study, we utilized an enhanced green fluorescent protein (EGFP)-tagged reporter plasmid cis linked to a doxycycline-inducible antisense promoter, generating antisense transcription that fully overlaps EGFP, to study the mechanism and dynamics of gene silencing after induction of noncoding antisense transcription in undifferentiated and differentiating mouse embryonic stem cells (ESCs). We found that EGFP silencing is reversible in ESCs but is locked into a stable state upon ESC differentiation. Reversible silencing in ESCs is chromatin dependent and is associated with accumulation of trimethylated lysine 36 on histone H3 (H3K36me3) at the EGFP promoter region. In differentiating ESCs, antisense transcription-induced accumulation of H3K36me3 was associated with an increase in CpG methylation at the EGFP promoter. Repression of the sense promoter was affected by small-molecule inhibitors which interfere with DNA methylation and histone demethylation pathways. Our results indicate a general mechanism for silencing of fully overlapping sense-antisense gene pairs involving antisense transcription-induced accumulation of H3K36me3 at the sense promoter, resulting in reversible silencing of the sense partner, which is stabilized during ESC differentiation by CpG methylation.


Assuntos
Diferenciação Celular/genética , Cromatina/genética , Células-Tronco Embrionárias/metabolismo , Inativação Gênica , Animais , Células Cultivadas , Cromatina/metabolismo , Ilhas de CpG/genética , Metilação de DNA , DNA Antissenso/genética , Doxiciclina/farmacologia , Células-Tronco Embrionárias/citologia , Citometria de Fluxo , Expressão Gênica/efeitos dos fármacos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Metilação , Camundongos da Linhagem 129 , Camundongos Transgênicos , Modelos Genéticos , Regiões Promotoras Genéticas/genética
6.
BMC Genomics ; 16: 291, 2015 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-25884295

RESUMO

BACKGROUND: In mammalian meiotic prophase, homologous chromosome recognition is aided by formation and repair of programmed DNA double-strand breaks (DSBs). Subsequently, stable associations form through homologous chromosome synapsis. In male mouse meiosis, the largely heterologous X and Y chromosomes synapse only in their short pseudoautosomal regions (PARs), and DSBs persist along the unsynapsed non-homologous arms of these sex chromosomes. Asynapsis of these arms and the persistent DSBs then trigger transcriptional silencing through meiotic sex chromosome inactivation (MSCI), resulting in formation of the XY body. This inactive state is partially maintained in post-meiotic haploid spermatids (postmeiotic sex chromatin repression, PSCR). For the human, establishment of MSCI and PSCR have also been reported, but X-linked gene silencing appears to be more variable compared to mouse. To gain more insight into the regulation and significance of MSCI and PSCR among different eutherian species, we have performed a global analysis of XY pairing dynamics, DSB repair, MSCI and PSCR in the domestic dog (Canis lupus familiaris), for which the complete genome sequence has recently become available, allowing a thorough comparative analyses. RESULTS: In addition to PAR synapsis between X and Y, we observed extensive self-synapsis of part of the dog X chromosome, and rapid loss of known markers of DSB repair from that part of the X. Sequencing of RNA from purified spermatocytes and spermatids revealed establishment of MSCI. However, the self-synapsing region of the X displayed higher X-linked gene expression compared to the unsynapsed area in spermatocytes, and was post-meiotically reactivated in spermatids. In contrast, genes in the PAR, which are expected to escape MSCI, were expressed at very low levels in both spermatocytes and spermatids. Our comparative analysis was then used to identify two X-linked genes that may escape MSCI in spermatocytes, and 21 that are specifically re-activated in spermatids of human, mouse and dog. CONCLUSIONS: Our data indicate that MSCI is incomplete in the dog. This may be partially explained by extensive, but transient, self-synapsis of the X chromosome, in association with rapid completion of meiotic DSB repair. In addition, our comparative analysis identifies novel candidate male fertility genes.


Assuntos
Cromossomos de Mamíferos/metabolismo , Cães/genética , Meiose , Cromossomos Sexuais/metabolismo , Espermatogênese , Inativação do Cromossomo X , Animais , Animais Domésticos , Quebras de DNA de Cadeia Dupla , Reparo do DNA , Cães/metabolismo , Humanos , Masculino , Camundongos , Espermatócitos/citologia , Espermatócitos/metabolismo , Testículo
7.
Stem Cell Reports ; 4(2): 199-208, 2015 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-25640760

RESUMO

In placental mammals, balanced expression of X-linked genes is accomplished by X chromosome inactivation (XCI) in female cells. In humans, random XCI is initiated early during embryonic development. To investigate whether reprogramming of female human fibroblasts into induced pluripotent stem cells (iPSCs) leads to reactivation of the inactive X chromosome (Xi), we have generated iPSC lines from fibroblasts heterozygous for large X-chromosomal deletions. These fibroblasts show completely skewed XCI of the mutated X chromosome, enabling monitoring of X chromosome reactivation (XCR) and XCI using allele-specific single-cell expression analysis. This approach revealed that XCR is robust under standard culture conditions, but does not prevent reinitiation of XCI, resulting in a mixed population of cells with either two active X chromosomes (Xas) or one Xa and one Xi. This mixed population of XaXa and XaXi cells is stabilized in naive human stem cell medium, allowing expansion of clones with two Xas.


Assuntos
Cromossomos Humanos X , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Ativação Transcricional , Linhagem Celular , Células Cultivadas , Mapeamento Cromossômico , Feminino , Fibroblastos/metabolismo , Expressão Gênica , Ordem dos Genes , Genes Ligados ao Cromossomo X , Loci Gênicos , Vetores Genéticos/genética , Humanos , Cariótipo , Transgenes , Inativação do Cromossomo X
8.
Mol Cell ; 53(6): 965-78, 2014 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-24613346

RESUMO

X chromosome inactivation (XCI) in female placental mammals is a vital mechanism for dosage compensation between X-linked and autosomal genes. XCI starts with activation of Xist and silencing of the negative regulator Tsix, followed by cis spreading of Xist RNA over the future inactive X chromosome (Xi). Here, we show that XCI does not require physical contact between the two X chromosomes (X-pairing) but is regulated by trans-acting diffusible factors. We found that the X-encoded trans-acting and dose-dependent XCI-activator RNF12 acts in concert with the cis-regulatory region containing Jpx, Ftx, and Xpr to activate Xist and to overcome repression by Tsix. RNF12 acts at two subsequent steps; two active copies of Rnf12 drive initiation of XCI, and one copy needs to remain active to maintain XCI toward establishment of the Xi. This two-step mechanism ensures that XCI is very robust and fine-tuned, preventing XCI of both X chromosomes.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , RNA Longo não Codificante/genética , Ubiquitina-Proteína Ligases/genética , Inativação do Cromossomo X , Cromossomo X , Animais , Transporte Biológico , Linhagem Celular , Pareamento Cromossômico , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Feminino , Humanos , Camundongos Knockout , RNA Longo não Codificante/metabolismo , Transdução de Sinais , Ubiquitina-Proteína Ligases/metabolismo
9.
PLoS Genet ; 9(6): e1003538, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23754961

RESUMO

In mammalian meiotic prophase, the initial steps in repair of SPO11-induced DNA double-strand breaks (DSBs) are required to obtain stable homologous chromosome pairing and synapsis. The X and Y chromosomes pair and synapse only in the short pseudo-autosomal regions. The rest of the chromatin of the sex chromosomes remain unsynapsed, contains persistent meiotic DSBs, and the whole so-called XY body undergoes meiotic sex chromosome inactivation (MSCI). A more general mechanism, named meiotic silencing of unsynapsed chromatin (MSUC), is activated when autosomes fail to synapse. In the absence of SPO11, many chromosomal regions remain unsynapsed, but MSUC takes place only on part of the unsynapsed chromatin. We asked if spontaneous DSBs occur in meiocytes that lack a functional SPO11 protein, and if these might be involved in targeting the MSUC response to part of the unsynapsed chromatin. We generated mice carrying a point mutation that disrupts the predicted catalytic site of SPO11 (Spo11(YF/YF)), and blocks its DSB-inducing activity. Interestingly, we observed foci of proteins involved in the processing of DNA damage, such as RAD51, DMC1, and RPA, both in Spo11(YF/YF) and Spo11 knockout meiocytes. These foci preferentially localized to the areas that undergo MSUC and form the so-called pseudo XY body. In SPO11-deficient oocytes, the number of repair foci increased during oocyte development, indicating the induction of S phase-independent, de novo DNA damage. In wild type pachytene oocytes we observed meiotic silencing in two types of pseudo XY bodies, one type containing DMC1 and RAD51 foci on unsynapsed axes, and another type containing only RAD51 foci, mainly on synapsed axes. Taken together, our results indicate that in addition to asynapsis, persistent SPO11-induced DSBs are important for the initiation of MSCI and MSUC, and that SPO11-independent DNA repair foci contribute to the MSUC response in oocytes.


Assuntos
Pareamento Cromossômico/genética , Reparo do DNA/genética , Endodesoxirribonucleases/genética , Meiose/genética , Inativação do Cromossomo X/genética , Animais , Quebras de DNA de Cadeia Dupla , Endodesoxirribonucleases/metabolismo , Feminino , Masculino , Camundongos , Oogênese/genética , Espermatócitos/citologia , Espermatócitos/metabolismo , Cromossomo X/genética , Cromossomo Y/genética
10.
PLoS One ; 7(7): e40691, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22848396

RESUMO

In fertile women, the endometrium undergoes regular cycles of tissue build-up and regression. It is likely that uterine stem cells are involved in this remarkable turn over. The main goal of our current investigations was to identify slow-cycling (quiescent) endometrial stem cells by means of a pulse-chase approach to selectively earmark, prospectively isolate, and characterize label-retaining cells (LRCs). To this aim, transgenic mice expressing histone2B-GFP (H2B-GFP) in a Tet-inducible fashion were administered doxycycline (pulse) which was thereafter withdrawn from the drinking water (chase). Over time, dividing cells progressively loose GFP signal whereas infrequently dividing cells retain H2B-GFP expression. We evaluated H2B-GFP retaining cells at different chase time points and identified long-term (LT; >12 weeks) LRCs. The LT-LRCs are negative for estrogen receptor-α and express low levels of progesterone receptors. LRCs sorted by FACS are able to form spheroids capable of self-renewal and differentiation. Upon serum stimulation spheroid cells are induced to differentiate and form glandular structures which express markers of mature mullerian epithelial cells. Overall, the results indicate that quiescent cells located in the distal oviduct have stem-like properties and can differentiate into distinct cell lineages specific of endometrium, proximal and distal oviduct. Future lineage-tracing studies will elucidate the role played by these cells in homeostasis, tissue injury and cancer of the female reproductive tract in the mouse and eventually in man.


Assuntos
Diferenciação Celular/fisiologia , Oviductos/citologia , Oviductos/fisiologia , Células-Tronco/citologia , Células-Tronco/fisiologia , Animais , Separação Celular/métodos , Células Cultivadas , Endométrio/citologia , Endométrio/fisiologia , Feminino , Humanos , Camundongos , Camundongos Transgênicos
11.
Epigenetics Chromatin ; 5(1): 8, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22709888

RESUMO

BACKGROUND: CTCF is a highly conserved and essential zinc finger protein expressed in virtually all cell types. In conjunction with cohesin, it organizes chromatin into loops, thereby regulating gene expression and epigenetic events. The function of CTCFL or BORIS, the testis-specific paralog of CTCF, is less clear. RESULTS: Using immunohistochemistry on testis sections and fluorescence-based microscopy on intact live seminiferous tubules, we show that CTCFL is only transiently present during spermatogenesis, prior to the onset of meiosis, when the protein co-localizes in nuclei with ubiquitously expressed CTCF. CTCFL distribution overlaps completely with that of Stra8, a retinoic acid-inducible protein essential for the propagation of meiosis. We find that absence of CTCFL in mice causes sub-fertility because of a partially penetrant testicular atrophy. CTCFL deficiency affects the expression of a number of testis-specific genes, including Gal3st1 and Prss50. Combined, these data indicate that CTCFL has a unique role in spermatogenesis. Genome-wide RNA expression studies in ES cells expressing a V5- and GFP-tagged form of CTCFL show that genes that are downregulated in CTCFL-deficient testis are upregulated in ES cells. These data indicate that CTCFL is a male germ cell gene regulator. Furthermore, genome-wide DNA-binding analysis shows that CTCFL binds a consensus sequence that is very similar to that of CTCF. However, only ~3,700 out of the ~5,700 CTCFL- and ~31,000 CTCF-binding sites overlap. CTCFL binds promoters with loosely assembled nucleosomes, whereas CTCF favors consensus sites surrounded by phased nucleosomes. Finally, an ES cell-based rescue assay shows that CTCFL is functionally different from CTCF. CONCLUSIONS: Our data suggest that nucleosome composition specifies the genome-wide binding of CTCFL and CTCF. We propose that the transient expression of CTCFL in spermatogonia and preleptotene spermatocytes serves to occupy a subset of promoters and maintain the expression of male germ cell genes.

12.
Nature ; 485(7398): 386-90, 2012 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-22596162

RESUMO

Evolution of the mammalian sex chromosomes has resulted in a heterologous X and Y pair, where the Y chromosome has lost most of its genes. Hence, there is a need for X-linked gene dosage compensation between XY males and XX females. In placental mammals, this is achieved by random inactivation of one X chromosome in all female somatic cells. Upregulation of Xist transcription on the future inactive X chromosome acts against Tsix antisense transcription, and spreading of Xist RNA in cis triggers epigenetic changes leading to X-chromosome inactivation. Previously, we have shown that the X-encoded E3 ubiquitin ligase RNF12 is upregulated in differentiating mouse embryonic stem cells and activates Xist transcription and X-chromosome inactivation. Here we identify the pluripotency factor REX1 as a key target of RNF12 in the mechanism of X-chromosome inactivation. RNF12 causes ubiquitination and proteasomal degradation of REX1, and Rnf12 knockout embryonic stem cells show an increased level of REX1. Using chromatin immunoprecipitation sequencing, REX1 binding sites were detected in Xist and Tsix regulatory regions. Overexpression of REX1 in female embryonic stem cells was found to inhibit Xist transcription and X-chromosome inactivation, whereas male Rex1(+/-) embryonic stem cells showed ectopic X-chromosome inactivation. From this, we propose that RNF12 causes REX1 breakdown through dose-dependent catalysis, thereby representing an important pathway to initiate X-chromosome inactivation. Rex1 and Xist are present only in placental mammals, which points to co-evolution of these two genes and X-chromosome inactivation.


Assuntos
Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Inativação do Cromossomo X , Cromossomo X/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Células-Tronco Embrionárias/metabolismo , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Dados de Sequência Molecular , Complexo de Endopeptidases do Proteassoma/metabolismo , Ligação Proteica , RNA Longo não Codificante , RNA não Traduzido/genética , Fatores de Transcrição/deficiência , Fatores de Transcrição/genética , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética , Ubiquitinação
13.
Curr Opin Cell Biol ; 24(3): 397-404, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22425180

RESUMO

Evolution of the mammalian sex chromosomes heavily impacts on the expression of X-encoded genes, both in marsupials and placental mammals. The loss of genes from the Y chromosome forced a two-fold upregulation of dose sensitive X-linked homologues. As a corollary, female cells would experience a lethal dose of X-linked genes, if this upregulation was not counteracted by evolution of X chromosome inactivation (XCI) that allows for only one active X chromosome per diploid genome. Marsupials rely on imprinted XCI, which inactivates always the paternally inherited X chromosome. In placental mammals, random XCI (rXCI) is the predominant form, inactivating either the maternal or paternal X. In this review, we discuss recent new insights in the regulation of XCI. Based on these findings, we propose an X inactivation center (Xic), composed of a cis-Xic and trans-Xic that encompass all elements and factors acting to control rXCI either in cis or in trans. We also highlight that XCI may have evolved from a very small nucleation site on the X chromosome in the vicinity of the Sox3 gene. Finally, we discuss the possible evolutionary road maps that resulted in imprinted XCI and rXCI as observed in present day mammals.


Assuntos
Evolução Biológica , Inativação do Cromossomo X , Animais , Cromossomos de Mamíferos , Mecanismo Genético de Compensação de Dose , Genes Ligados ao Cromossomo X , Mamíferos/genética , Marsupiais/genética , Cromossomo X
14.
Br J Sports Med ; 46(8): 614-7, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21540190

RESUMO

Based on DNA analysis of a historical case, the authors describe how a female athlete can be unknowingly confronted with the consequences of a disorder of sex development resulting in hyperandrogenism emerging early in her sports career. In such a situation, it is harmful and confusing to question sex and gender. Exposure to either a low or high level of endogenous testosterone from puberty is a decisive factor with respect to sexual dimorphism of physical performance. Yet, measurement of testosterone is not the means by which questions of an athlete's eligibility to compete with either women or men are resolved. The authors discuss that it might be justifiable to use the circulating testosterone level as an endocrinological parameter, to try to arrive at an objective criterion in evaluating what separates women and men in sports competitions, which could prevent the initiation of complicated, lengthy and damaging sex and gender verification procedures.


Assuntos
Desempenho Atlético/fisiologia , Transtornos do Desenvolvimento Sexual/diagnóstico , Análise para Determinação do Sexo/métodos , Desempenho Atlético/história , Cromossomos Humanos X/fisiologia , Cromossomos Humanos Y/fisiologia , Transtornos do Desenvolvimento Sexual/sangue , Transtornos do Desenvolvimento Sexual/genética , Transtornos do Desenvolvimento Sexual/história , Feminino , Identidade de Gênero , História do Século XX , Humanos , Masculino , Mosaicismo , Países Baixos , Caracteres Sexuais , Análise para Determinação do Sexo/história , Desenvolvimento Sexual/fisiologia , Testosterona/sangue
15.
PLoS One ; 6(8): e23155, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21858012

RESUMO

RAD18 is an ubiquitin ligase involved in replicative damage bypass and DNA double-strand break (DSB) repair processes. We found that RPA is required for the dynamic pattern of RAD18 localization during the cell cycle, and for accumulation of RAD18 at sites of γ-irradiation-induced DNA damage. In addition, RAD18 colocalizes with chromatin-associated conjugated ubiquitin and ubiquitylated H2A throughout the cell cycle and following irradiation. This localization pattern depends on the presence of an intact, ubiquitin-binding Zinc finger domain. Using a biochemical approach, we show that RAD18 directly binds to ubiquitylated H2A and several other unknown ubiquitylated chromatin components. This interaction also depends on the RAD18 Zinc finger, and increases upon the induction of DSBs by γ-irradiation. Intriguingly, RAD18 does not always colocalize with regions that show enhanced H2A ubiquitylation. In human female primary fibroblasts, where one of the two X chromosomes is inactivated to equalize X-chromosomal gene expression between male (XY) and female (XX) cells, this inactive X is enriched for ubiquitylated H2A, but only rarely accumulates RAD18. This indicates that the binding of RAD18 to ubiquitylated H2A is context-dependent. Regarding the functional relevance of RAD18 localization at DSBs, we found that RAD18 is required for recruitment of RAD9, one of the components of the 9-1-1 checkpoint complex, to these sites. Recruitment of RAD9 requires the functions of the RING and Zinc finger domains of RAD18. Together, our data indicate that association of RAD18 with DSBs through ubiquitylated H2A and other ubiquitylated chromatin components allows recruitment of RAD9, which may function directly in DSB repair, independent of downstream activation of the checkpoint kinases CHK1 and CHK2.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Proteínas de Ligação a DNA/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Cromatina/genética , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/genética , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Raios gama , Células HeLa , Histonas/genética , Histonas/metabolismo , Humanos , Immunoblotting , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Ligação Proteica , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Técnicas do Sistema de Duplo-Híbrido , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases , Ubiquitinação , Raios Ultravioleta , Dedos de Zinco/genética
16.
J Cell Sci ; 124(Pt 16): 2837-50, 2011 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-21807948

RESUMO

RAD18 is an ubiquitin ligase that is involved in replication damage bypass and DNA double-strand break (DSB) repair processes in mitotic cells. Here, we investigated the testicular phenotype of Rad18-knockdown mice to determine the function of RAD18 in meiosis, and in particular, in the repair of meiotic DSBs induced by the meiosis-specific topoisomerase-like enzyme SPO11. We found that RAD18 is recruited to a specific subfraction of persistent meiotic DSBs. In addition, RAD18 is recruited to the chromatin of the XY chromosome pair, which forms the transcriptionally silent XY body. At the XY body, RAD18 mediates the chromatin association of its interaction partners, the ubiquitin-conjugating enzymes HR6A and HR6B. Moreover, RAD18 was found to regulate the level of dimethylation of histone H3 at Lys4 and maintain meiotic sex chromosome inactivation, in a manner similar to that previously observed for HR6B. Finally, we show that RAD18 and HR6B have a role in the efficient repair of a small subset of meiotic DSBs.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Meiose , Testículo/metabolismo , Animais , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Técnicas de Silenciamento de Genes , Histonas/genética , Histonas/metabolismo , Masculino , Meiose/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Interferente Pequeno/genética , Testículo/patologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Inativação do Cromossomo X/genética
17.
Nucleic Acids Res ; 39(18): e121, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21737430

RESUMO

The use of bacterial artificial chromosomes (BACs) provides a consistent and high targeting efficiency of homologous recombination in embryonic stem (ES) cells, facilitated by long stretches of sequence homology. Here, we introduce a BAC targeting method which employs restriction fragment length polymorphisms (RFLPs) in targeted polymorphic C57BL/6/Cast/Ei F1 mouse ES cell lines to identify properly targeted ES cell clones. We demonstrate that knockout alleles can be generated either by targeting of an RFLP located in the open reading frame thereby disrupting the RFLP and ablating gene function, or by introduction of a transcription stop cassette that prematurely stops transcription of an RFLP located downstream of the stop cassette. With both methods we have generated Rnf12 heterozygous knockout ES cells, which were identified by allele specific PCR using genomic DNA or cDNA as a template. Our results indicate that this novel strategy is efficient and precise, by combining a high targeting efficiency with a convenient PCR based readout and reliable detection of correct targeting events.


Assuntos
Cromossomos Artificiais Bacterianos , Células-Tronco Embrionárias/metabolismo , Técnicas de Inativação de Genes , Polimorfismo de Fragmento de Restrição , Animais , Linhagem Celular , Células-Tronco Embrionárias/citologia , Camundongos , Camundongos Endogâmicos C57BL , Transcrição Gênica , Ubiquitina-Proteína Ligases/genética
18.
PLoS Genet ; 7(1): e1002001, 2011 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-21298085

RESUMO

In somatic cells of female placental mammals, one of the two X chromosomes is transcriptionally silenced to accomplish an equal dose of X-encoded gene products in males and females. Initiation of random X chromosome inactivation (XCI) is thought to be regulated by X-encoded activators and autosomally encoded suppressors controlling Xist. Spreading of Xist RNA leads to silencing of the X chromosome in cis. Here, we demonstrate that the dose dependent X-encoded XCI activator RNF12/RLIM acts in trans and activates Xist. We did not find evidence for RNF12-mediated regulation of XCI through Tsix or the Xist intron 1 region, which are both known to be involved in inhibition of Xist. In addition, we found that Xist intron 1, which contains a pluripotency factor binding site, is not required for suppression of Xist in undifferentiated ES cells. Analysis of female Rnf12⁻/⁻ knockout ES cells showed that RNF12 is essential for initiation of XCI and is mainly involved in the regulation of Xist. We conclude that RNF12 is an indispensable factor in up-regulation of Xist transcription, thereby leading to initiation of random XCI.


Assuntos
Inativação Gênica , RNA não Traduzido/genética , Proteínas Repressoras/fisiologia , Inativação do Cromossomo X/genética , Animais , Células-Tronco Embrionárias/metabolismo , Feminino , Imunofluorescência , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Vetores Genéticos , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Hibridização in Situ Fluorescente , Íntrons/genética , Masculino , Camundongos , Proteína Homeobox Nanog , RNA Longo não Codificante , Proteínas Repressoras/genética , Ubiquitina-Proteína Ligases
19.
PLoS One ; 5(12): e15598, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21179482

RESUMO

Chimpanzees and humans are genetically very similar, with the striking exception of their Y chromosomes, which have diverged tremendously. The male-specific region (MSY), representing the greater part of the Y chromosome, is inherited from father to son in a clonal fashion, with natural selection acting on the MSY as a unit. Positive selection might involve the performance of the MSY in spermatogenesis. Chimpanzees have a highly polygamous mating behavior, so that sperm competition is thought to provide a strong selective force acting on the Y chromosome in the chimpanzee lineage. In consequence of evolution of the heterologous sex chromosomes in mammals, meiotic sex chromosome inactivation (MSCI) results in a transcriptionally silenced XY body in male meiotic prophase, and subsequently also in postmeiotic repression of the sex chromosomes in haploid spermatids. This has evolved to a situation where MSCI has become a prerequisite for spermatogenesis. Here, by analysis of microarray testicular expression data representing a small number of male chimpanzees and men, we obtained information indicating that meiotic and postmeiotic X chromosome silencing might be more effective in chimpanzee than in human spermatogenesis. From this, we suggest that the remarkable reorganization of the chimpanzee Y chromosome, compared to the human Y chromosome, might have an impact on its meiotic interactions with the X chromosome and thereby on X chromosome silencing in spermatogenesis. Further studies will be required to address comparative functional aspects of MSCI in chimpanzee, human, and other placental mammals.


Assuntos
Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Inativação Gênica , Espermatogênese , Cromossomo X/genética , Cromossomo Y/genética , Animais , Regulação da Expressão Gênica , Humanos , Masculino , Meiose , Pan troglodytes , Prófase , Comportamento Sexual Animal , Testículo/metabolismo
20.
BMC Genomics ; 11: 367, 2010 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-20537150

RESUMO

BACKGROUND: The ubiquitin-conjugating enzyme HR6B is required for spermatogenesis in mouse. Loss of HR6B results in aberrant histone modification patterns on the trancriptionally silenced X and Y chromosomes (XY body) and on centromeric chromatin in meiotic prophase. We studied the relationship between these chromatin modifications and their effects on global gene expression patterns, in spermatocytes and spermatids. RESULTS: HR6B is enriched on the XY body and on centromeric regions in pachytene spermatocytes. Global gene expression analyses revealed that spermatid-specific single- and multicopy X-linked genes are prematurely expressed in Hr6b knockout spermatocytes. Very few other differences in gene expression were observed in these cells, except for upregulation of major satellite repeat transcription. In contrast, in Hr6b knockout spermatids, 7298 genes were differentially expressed; 65% of these genes was downregulated, but we observed a global upregulation of gene transcription from the X chromosome. In wild type spermatids, approximately 20% of the single-copy X-linked genes reach an average expression level that is similar to the average expression from autosomes. CONCLUSIONS: Spermatids maintain an enrichment of repressive chromatin marks on the X chromosome, originating from meiotic prophase, but this does not interfere with transcription of the single-copy X-linked genes that are reactivated or specifically activated in spermatids. HR6B represses major satellite repeat transcription in spermatocytes, and functions in the maintenance of X chromosome silencing in spermatocytes and spermatids. It is discussed that these functions involve modification of chromatin structure, possibly including H2B ubiquitylation.


Assuntos
Espermátides/metabolismo , Espermatócitos/metabolismo , Enzimas de Conjugação de Ubiquitina/metabolismo , Inativação do Cromossomo X , Cromossomo X/genética , Animais , Proteínas de Ciclo Celular/genética , Centrômero/genética , Centrômero/metabolismo , Cromatina/genética , Cromatina/metabolismo , Dosagem de Genes/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Genes Ligados ao Cromossomo X/genética , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Especificidade de Órgãos , Fosfoproteínas/genética , Testículo/metabolismo , Transcrição Gênica , Ativação Transcricional , Enzimas de Conjugação de Ubiquitina/deficiência , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação , Regulação para Cima , Cromossomo X/metabolismo , Cromossomo Y/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...