Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Invest New Drugs ; 39(3): 785-795, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33389388

RESUMO

Background Ulixertinib is the first-in-class ERK1/2 kinase inhibitor with encouraging clinical activity in BRAF- and NRAS-mutant cancers. Dermatologic adverse events (dAEs) are common with ulixertinib, so management guidelines like those established for epidermal growth factor receptor inhibitor (EGFRi)-associated dAEs are needed. Patients and Methods This was an open-label, multicenter, phase I dose escalation and expansion trial of ulixertinib evaluating data from 135 patients with advanced malignancies enrolled between March 2013 and July 2017. Histopathological features, management, and dAEs in 34 patients are also reported. Twice daily oral ulixertinib was administered at 10 to 900 mg in the dose escalation cohort (n = 27) and at 600 mg in 21-day cycles in the expansion cohort (n = 108). Results The incidence of ulixertinib-induced dAEs and combined rash were 79% (107/135) and 76% (102/135). The most common dAEs included acneiform rash (45/135, 33%), maculopapular rash (36/135, 27%), and pruritus (34/135, 25%). Grade 3 dAEs were observed in 19% (25/135) of patients; no grade 4 or 5 dAEs were seen. The presence of at least 1 dAE was associated with stable disease (SD) or partial response (PR) (OR = 3.64, 95% CI 1.52-8.72; P = .003). Acneiform rash was associated with a PR (OR = 10.19, 95% CI 2.67-38.91; P < .001). Conclusion The clinical spectrum of ulixertinib-induced dAEs was similar to EGFR and MEK inhibitors; dAEs may serve as a surrogate marker of tumor response. We propose treatment algorithms for common ERK inhibitor-induced dAEs to maintain patients' quality of life and dose intensity for maximal clinical benefit. Clinical Trial Registration: NCT01781429.


Assuntos
Aminopiridinas/efeitos adversos , Analgésicos/uso terapêutico , Antibacterianos/uso terapêutico , Antineoplásicos/efeitos adversos , Toxidermias/tratamento farmacológico , MAP Quinases Reguladas por Sinal Extracelular/antagonistas & inibidores , Inibidores de Proteínas Quinases/efeitos adversos , Pirróis/efeitos adversos , Esteroides/uso terapêutico , Adulto , Idoso , Idoso de 80 Anos ou mais , Toxidermias/patologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Pele/efeitos dos fármacos , Pele/patologia , Adulto Jovem
2.
Science ; 313(5793): 1596-604, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16973872

RESUMO

We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.


Assuntos
Duplicação Gênica , Genoma de Planta , Populus/genética , Análise de Sequência de DNA , Arabidopsis/genética , Mapeamento Cromossômico , Biologia Computacional , Evolução Molecular , Etiquetas de Sequências Expressas , Expressão Gênica , Genes de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Polimorfismo de Nucleotídeo Único , Populus/crescimento & desenvolvimento , Populus/metabolismo , Estrutura Terciária de Proteína , RNA de Plantas/análise , RNA não Traduzido/análise
3.
Development ; 127(9): 1815-22, 2000 May.
Artigo em Inglês | MEDLINE | ID: mdl-10751170

RESUMO

PROLIFERA (PRL) encodes a homologue of the DNA replication licensing factor Mcm7, a highly conserved protein found in all eukaryotes. Insertions in the PROLIFERA gene are lethal, resulting in decreased transmission through the female gametophyte, and homozygous embryonic lethality. We show here that PROLIFERA is specifically expressed in populations of dividing cells in sporophytic tissues of the plant body, such as the palisade layer of the leaf and founder cells of initiating flower primordia. Gene fusions with the green fluorescent protein (GFP) reveal that the PROLIFERA protein accumulates during the G(1) phase of the cell cycle, and is transiently localized to the nucleus. During mitosis, the fusion protein rapidly disappears, returning to daughter nuclei during G(1). PROLIFERA::GUS fusions are strongly expressed in the central cell nucleus of mature megagametophytes, which have a variety of arrest points reflecting a leaky lethality. Expression is also observed in the endosperm of mutant prl embryo sacs that arrest following fertilization. Crosses with wild-type pollen result in occasional embryonic lethals that also stain for GUS activity. In contrast, embryos resulting from crosses of wild-type carpels with PRL::GUS pollen do not stain and are phenotypically normal. In situ hybridization of GUS fusion RNA indicates transcription is equivalent from maternally and paternally derived alleles, so that accumulation of maternally derived gametophytic protein is likely to be responsible for the 'maternal' effect.


Assuntos
Proteínas de Arabidopsis , Arabidopsis/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ligação a DNA/genética , Proteínas Nucleares/genética , Proteínas de Plantas/genética , Arabidopsis/embriologia , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Cruzamentos Genéticos , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Fase G1 , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes Letais , Proteínas de Fluorescência Verde , Histocitoquímica , Hibridização In Situ , Proteínas Luminescentes , Componente 7 do Complexo de Manutenção de Minicromossomo , Mutação , Proteínas Nucleares/metabolismo , Proteínas de Plantas/metabolismo , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
4.
Plant Physiol ; 119(2): 375-84, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-9952432

RESUMO

Tracheary element differentiation requires strict coordination of secondary cell wall synthesis and programmed cell death (PCD) to produce a functional cell corpse. The execution of cell death involves an influx of Ca2+ into the cell and is manifested by rapid collapse of the large hydrolytic vacuole and cessation of cytoplasmic streaming. This precise means of effecting cell death is a prerequisite for postmortem developmental events, including autolysis and chromatin degradation. A 40-kD serine protease is secreted during secondary cell wall synthesis, which may be the coordinating factor between secondary cell wall synthesis and PCD. Specific proteolysis of the extracellular matrix is necessary and sufficient to trigger Ca2+ influx, vacuole collapse, cell death, and chromatin degradation, suggesting that extracellular proteolysis plays a key regulatory role during PCD. We propose a model in which secondary cell wall synthesis and cell death are coordinated by the concomitant secretion of the 40-kD protease and secondary cell wall precursors. Subsequent cell death is triggered by a critical activity of protease or the arrival of substrate signal precursor corresponding with the completion of a functional secondary cell wall.

5.
Genetics ; 138(4): 1293-300, 1994 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-7896107

RESUMO

We report the identification of quantitative trait loci (QTL) influencing wood specific gravity (WSG) in an outbred pedigree of loblolly pine (Pinus taeda L.). QTL mapping in an outcrossing species is complicated by the presence of multiple alleles (> 2) at QTL and marker loci. Multiple alleles at QTL allow the examination of interaction among alleles at QTL (deviation from additive gene action). Restriction fragment length polymorphism (RFLP) marker genotypes and wood specific gravity phenotypes were determined for 177 progeny. Two RFLP linkage maps were constructed, representing maternal and paternal parent gamete segregations as inferred from diploid progeny RFLP genotypes. RFLP loci segregating for multiple alleles were vital for aligning the two maps. Each RFLP locus was assayed for cosegregation with WSG QTL using analysis of variance (ANOVA). Five regions of the genome contained one or more RFLP loci showing differences in mean WSG at or below the P = 0.05 level for progeny as grouped by RFLP genotype. One region contained a marker locus (S6a) whose QTL-associated effects were highly significant (P > 0.0002). Marker S6a segregated for multiple alleles, a prerequisite for determining the number of alleles segregating at the linked QTL and analyzing the interactions among QTL alleles. The QTL associated with marker S6a appeared to be segregating for multiple alleles which interacted with each other and with environments. No evidence for digenic epistasis was found among the five QTL.


Assuntos
Madeira , Alelos , Cruzamento , Fenômenos Químicos , Físico-Química , Mapeamento Cromossômico , Epistasia Genética , Ligação Genética , Pinus taeda , Polimorfismo de Fragmento de Restrição
6.
Theor Appl Genet ; 88(3-4): 279-82, 1994 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24186006

RESUMO

A high-density genetic map based on restriction fragment length polymorphisms (RFLPs) is being constructed for loblolly pine (Pinus taeda L.). Consequently, a large number of DNA probes from loblolly pine are potentially available for use in other species. We have used some of these DNA probes to detect RFLPs in 12 conifers and an angiosperm. Thirty complementary DNA and two genomic DNA probes from loblolly pine were hybridized to Southern blots containing DNA from five species of Pinus (P. elliottii, P. lambertiana, P. radiata, P. sylvestris, and P. taeda), one species from each of four other genera of Pinaceae (Abies concolor, Larix laricina, Picea abies, and Pseudotsuga menziesii), one species from each of three other families of Coniferales [Sequoia sempervirens (Taxodiaceae), Torreya californica (Taxaceae) and Calocedrus decurrens (Cupressaceae)], and to one angiosperm species (Populus nigra). Results showed that mapped DNA probes from lobolly pine will cross-hybridize to genomic DNA of other species of Pinus and some other genera of the Pinaceae. Only a small proportion of the probes hybridized to genomic DNA from three other families of the Coniferales and the one angiosperm examined. This study demonstrates that mapped DNA probes from loblolly pine can be used to construct RFLP maps for related species, thus enabling the opportunity for comparative genome mapping in conifers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...