Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 28(7): 10239-10252, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32225613

RESUMO

Undoubtedly, Raman spectroscopy is one of the most elaborate spectroscopy tools in materials science, chemistry, medicine and optics. However, when it comes to the analysis of nanostructured specimens or individual sub-wavelength-sized systems, the access to Raman spectra resulting from different excitation schemes is usually very limited. For instance, the excitation with an electric field component oriented perpendicularly to the substrate plane is a difficult task. Conventionally, this can only be achieved by mechanically tilting the sample or by sophisticated sample preparation. Here, we propose a novel experimental method based on the utilization of polarization tailored light for Raman spectroscopy of individual nanostructures. As a proof of principle, we create three-dimensional electromagnetic field distributions at the nanoscale using tightly focused cylindrical vector beams impinging normally onto the specimen, hence keeping the traditional beam-path of commercial Raman systems. In order to demonstrate the convenience of this excitation scheme, we use a sub-wavelength diameter gallium-nitride nanostructure as a test platform and show experimentally that its Raman spectra depend sensitively on its location relative to the focal vector field. The observed Raman spectra can be attributed to the interaction with transverse and pure longitudinal electric field components. This novel technique may pave the way towards a characterization of Raman active nanosystems, granting direct access to growth-related parameters such as strain or defects in the material by using the full information of all Raman modes.

2.
Opt Lett ; 41(15): 3499-502, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27472603

RESUMO

We investigate the lateral transport of (longitudinal) spin angular momentum in a special polarization tailored light beam composed of a superposition of a y-polarized zero-order and an x-polarized first-order Hermite-Gaussian mode. This phenomenon is linked to the relative Gouy phase shift between the individual modes upon propagation, but can also be interpreted as a geometric phase effect. Experimentally, we demonstrate the implementation of such a mode and measure the spin density upon propagation.

3.
Opt Express ; 23(23): 30195-203, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26698500

RESUMO

We present a theoretical study of the Goos-Hänchen and Imbert-Fedorov shifts for a fundamental Gaussian beam impinging on a surface coated with a single layer of graphene. We show that the graphene surface conductivity σ(ω) is responsible for the appearance of a giant and negative spatial Goos-Hänchen shift.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA