Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 40(10): 1882-1894, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37855544

RESUMO

An efficient algorithm to obtain the solutions for n-th order terms of perturbation expansions in absorption, scattering, and cross-coupling for light propagating in human tissue is presented. The proposed solution is free of any approximations and makes possible fast and efficient estimates of mammographic, optical tomographic, and fluorescent images, applying a perturbation order of 30 and more. The presented analysis sets the general limits for the applicability of the perturbation approach as a function of tumor size and optical properties of the human tissue. The convergence tests of the efficient calculations for large absorbing objects show excellent agreement with the reference data from finite element method calculations. The applicability of the theory is demonstrated in experiments on breast-like phantoms with high absorbing and low-scattering lesions.

2.
J Biomed Opt ; 27(7)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35711096

RESUMO

SIGNIFICANCE: Fluorescence imaging of rheumatoid diseases with indocyanine green (ICG) is an emerging technique with unique potential for diagnosis and therapy. Device characterization, monitoring of the performance, and further developments of the technique require tissue-equivalent fluorescent phantoms of high stability with appropriate anatomical shapes. AIM: Our investigations aim at the development of a three-dimensional (3D) printing technique to fabricate hand and finger models with appropriate optical properties in the near-infrared spectral range. These phantoms should have fluorescence properties similar to ICG, and excellent photostability and durability over years. APPROACH: We modified a 3D printing methacrylate photopolymer by adding the fluorescent dye Lumogen IR 765 to the raw material. Reduced scattering and absorption coefficients were adjusted to values representative of the human hand by incorporating titanium dioxide powder and black ink. The properties of printed phantoms of various compositions were characterized using UV/Vis and fluorescence spectroscopy, and time-resolved measurements. Photostability and bleaching were investigated with a hand imager. For comparison, several phantoms with ICG as fluorescent dye were printed and characterized as well. RESULTS: The spectral properties of Lumogen IR 765 are very similar to those of ICG. By optimizing the concentrations of Lumogen, titanium dioxide, and ink, anatomically shaped hand and vessel models with properties equivalent to in vivo investigations with a fluorescence hand imager could be printed. Phantoms with Lumogen IR 765 had an excellent photostability over up to 4 years. In contrast, phantoms printed with ICG showed significant bleaching and degradation of fluorescence over time. CONCLUSIONS: 3D printing of phantoms with Lumogen IR 765 is a promising method for fabricating anatomically shaped fluorescent tissue models of excellent stability with spectral properties similar to ICG. The phantoms are well-suited to monitor the performance of hand imagers. Concepts can easily be transferred to other fluorescence imaging applications of ICG.


Assuntos
Corantes Fluorescentes , Imagem Óptica , Corantes Fluorescentes/química , Humanos , Verde de Indocianina/química , Imagem Óptica/métodos , Imagens de Fantasmas , Impressão Tridimensional
3.
J Biomed Opt ; 27(7)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35701869

RESUMO

SIGNIFICANCE: Multi-laboratory initiatives are essential in performance assessment and standardization-crucial for bringing biophotonics to mature clinical use-to establish protocols and develop reference tissue phantoms that all will allow universal instrument comparison. AIM: The largest multi-laboratory comparison of performance assessment in near-infrared diffuse optics is presented, involving 28 instruments and 12 institutions on a total of eight experiments based on three consolidated protocols (BIP, MEDPHOT, and NEUROPT) as implemented on three kits of tissue phantoms. A total of 20 synthetic indicators were extracted from the dataset, some of them defined here anew. APPROACH: The exercise stems from the Innovative Training Network BitMap funded by the European Commission and expanded to include other European laboratories. A large variety of diffuse optics instruments were considered, based on different approaches (time domain/frequency domain/continuous wave), at various stages of maturity and designed for different applications (e.g., oximetry, spectroscopy, and imaging). RESULTS: This study highlights a substantial difference in hardware performances (e.g., nine decades in responsivity, four decades in dark count rate, and one decade in temporal resolution). Agreement in the estimates of homogeneous optical properties was within 12% of the median value for half of the systems, with a temporal stability of <5 % over 1 h, and day-to-day reproducibility of <3 % . Other tests encompassed linearity, crosstalk, uncertainty, and detection of optical inhomogeneities. CONCLUSIONS: This extensive multi-laboratory exercise provides a detailed assessment of near-infrared Diffuse optical instruments and can be used for reference grading. The dataset-available soon in an open data repository-can be evaluated in multiple ways, for instance, to compare different analysis tools or study the impact of hardware implementations.


Assuntos
Laboratórios , Óptica e Fotônica , Imagens de Fantasmas , Reprodutibilidade dos Testes , Análise Espectral
4.
Quant Imaging Med Surg ; 11(7): 3098-3119, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34249638

RESUMO

BACKGROUND: The use of rigid multi-exponential models (with a priori predefined numbers of components) is common practice for diffusion-weighted MRI (DWI) analysis of the kidney. This approach may not accurately reflect renal microstructure, as the data are forced to conform to the a priori assumptions of simplified models. This work examines the feasibility of less constrained, data-driven non-negative least squares (NNLS) continuum modelling for DWI of the kidney tubule system in simulations that include emulations of pathophysiological conditions. METHODS: Non-linear least squares (LS) fitting was used as reference for the simulations. For performance assessment, a threshold of 5% or 10% for the mean absolute percentage error (MAPE) of NNLS and LS results was used. As ground truth, a tri-exponential model using defined volume fractions and diffusion coefficients for each renal compartment (tubule system: Dtubules , ftubules ; renal tissue: Dtissue , ftissue ; renal blood: Dblood , fblood ;) was applied. The impact of: (I) signal-to-noise ratio (SNR) =40-1,000, (II) number of b-values (n=10-50), (III) diffusion weighting (b-rangesmall =0-800 up to b-rangelarge =0-2,180 s/mm2), and (IV) fixation of the diffusion coefficients Dtissue and Dblood was examined. NNLS was evaluated for baseline and pathophysiological conditions, namely increased tubular volume fraction (ITV) and renal fibrosis (10%: grade I, mild) and 30% (grade II, moderate). RESULTS: NNLS showed the same high degree of reliability as the non-linear LS. MAPE of the tubular volume fraction (ftubules ) decreased with increasing SNR. Increasing the number of b-values was beneficial for ftubules precision. Using the b-rangelarge led to a decrease in MAPE ftubules compared to b-rangesmall. The use of a medium b-value range of b=0-1,380 s/mm2 improved ftubules precision, and further bmax increases beyond this range yielded diminishing improvements. Fixing Dblood and Dtissue significantly reduced MAPE ftubules and provided near perfect distinction between baseline and ITV conditions. Without constraining the number of renal compartments in advance, NNLS was able to detect the (fourth) fibrotic compartment, to differentiate it from the other three diffusion components, and to distinguish between 10% vs. 30% fibrosis. CONCLUSIONS: This work demonstrates the feasibility of NNLS modelling for DWI of the kidney tubule system and shows its potential for examining diffusion compartments associated with renal pathophysiology including ITV fraction and different degrees of fibrosis.

5.
Methods Mol Biol ; 2216: 89-107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33475996

RESUMO

Renal tissue hypoperfusion and hypoxia are early key elements in the pathophysiology of acute kidney injury of various origins, and may also promote progression from acute injury to chronic kidney disease. Here we describe basic principles of methodology to quantify renal hemodynamics and tissue oxygenation by means of invasive probes in experimental animals. Advantages and disadvantages of the various methods are discussed in the context of the heterogeneity of renal tissue perfusion and oxygenation.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by a separate chapter describing the experimental procedure and data analysis.


Assuntos
Biomarcadores/análise , Hemodinâmica , Rim/fisiologia , Monitorização Fisiológica/métodos , Oxigênio/análise , Circulação Renal , Animais , Eletrodos , Lasers , Consumo de Oxigênio , Perfusão , Software
6.
Biomed Opt Express ; 11(11): 6570-6589, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33282509

RESUMO

A novel methodology for solving the inverse problem of diffuse optics for two-layered structures is proposed to retrieve the absolute quantities of optical absorption and reduced scattering coefficients of the layers simultaneously. A liquid phantom with various optical absorption properties in the deep layer is prepared and experimentally investigated using the space-enhanced time-domain method. Monte-Carlo simulations are applied to analyze the different measurements in time domain, space domain, and by the new methodology. The deviations of retrieved values from nominal values of both layers' optical properties are simultaneously reduced to a very low extent compared to the single-domain methods. The reliability and uncertainty of the retrieval performance are also considerably improved by the new methodology. It is observed in time-domain analyses that for the deep layer the retrieval of absorption coefficient is almost not affected by the scattering properties and this kind of "deep scattering neutrality" is investigated and overcome as well.

7.
Recent Results Cancer Res ; 216: 591-624, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32594400

RESUMO

Optical imaging offers a high potential for noninvasive detection and therapy of cancer in humans. Recent advances in instrumentation for diffuse optical imaging have led to new capabilities for the detection of cancer in highly scattering tissue such as the female breast. In particular, fluorescence imaging was made applicable as a sensitive technique to image molecular probes in vivo. We review recent developments in the detection of breast cancer and fluorescence-guided surgery of the breast by contrast agents available for application on humans. Detection of cancer has been investigated with the unspecific contrast agents "indocyanine green" and "omocianine" so far. Hereby, indocyanine green was found to offer high potential for the differentiation of malignant and benign lesions by exploiting vessel permeability for macromolecules as a cancer-specific feature. Tumor-specific molecular targeting and activatable probes have been investigated in clinical trials for fluorescence-guided tumor margin detection. In this application, high spatial resolution can be achieved, since tumor regions are visualized mainly at the tissue surface. As another example of superficial tumor tissue, imaging of lesions in the gastrointestinal tract is discussed. Promising results have been obtained on high-risk patients with Barrett´s esophagus and with ulcerative colitis by administering 5-aminolevulinic acid which induces accumulation of protoporphyrin IX serving as a tumor-specific fluorescent marker. Time-gated fluorescence imaging and spectroscopy are effective ways to suppress underlying background from tissue autofluorescence. Furthermore, recently developed tumor-specific molecular probes have been demonstrated to be superior to white-light endoscopy offering new ways for early detection of malignancies in the gastrointestinal tract.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Fluorescência , Neoplasias Gastrointestinais/diagnóstico por imagem , Imagem Óptica , Ácido Aminolevulínico/administração & dosagem , Ácido Aminolevulínico/metabolismo , Esôfago de Barrett/diagnóstico por imagem , Esôfago de Barrett/metabolismo , Feminino , Humanos
8.
Biomed Opt Express ; 11(1): 251-266, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-32010514

RESUMO

In this article we propose an implementation of the extended Kalman filter (EKF) for the retrieval of optical and geometrical properties in two-layered turbid media assuming a dynamic setting, where absorption of each layer was changed in different steps. Prior works implemented the EKF in frequency-domain with several pairs of light sources and detectors and for static parameters estimation problems. Here we explore the use of the EKF in single distance, time-domain measurements, together with a corresponding forward model. Results show good agreement between retrieved and nominal values, with rather narrow analytical credibility intervals, indicating that the recovery process has low uncertainty, especially for the absorption coefficients.

9.
Sci Rep ; 9(1): 19723, 2019 12 23.
Artigo em Inglês | MEDLINE | ID: mdl-31873155

RESUMO

Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.

10.
Opt Express ; 27(19): 26415-26431, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31674524

RESUMO

A multivariate method integrating time and space resolved techniques of near-infrared spectroscopy is proposed for simultaneously retrieving the absolute quantities of optical absorption and scattering properties in tissues. The time-domain feature of photon migration is advantageously constrained and regularized by its spatially-resolved amplitude patterns in the inverse procedure. Measurements of tissue-mimicking phantoms with various optical properties are analyzed with Monte-Carlo simulations to validate the method performance. The uniqueness, stability, and uncertainty of the method are discussed.

11.
Biomed Tech (Berl) ; 63(5): 511-518, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-29494335

RESUMO

Optical imaging of biological tissue in vivo at multiple wavelengths in the near-infrared (NIR) spectral range can be achieved with picosecond time resolution at high sensitivity by time-correlated single photon counting. Measuring and analyzing the distribution of times of flight of photons randomly propagated through the tissue has been applied for diffuse optical imaging and spectroscopy, e.g. of human breast tissue and of the brain. In this article, we review the main features and the potential of NIR multispectral imaging with picosecond time resolution and illustrate them by exemplar applications in these fields. In particular, we discuss the experimental methods developed at the Physikalisch-Technische Bundesanstalt (PTB) to record optical mammograms and to quantify the absorption and scattering properties from which hemoglobin concentration and oxygen saturation of healthy and diseased breast tissue have been derived by combining picosecond time-domain and spectral information. Furthermore, optical images of functional brain activation were obtained by a non-contact scanning device exploiting the null source-detector separation approach which takes advantage of the picosecond time resolution as well. The recorded time traces of changes in the oxy- and deoxyhemoglobin concentrations during a motor stimulation investigation show a localized response from the brain.


Assuntos
Encéfalo/diagnóstico por imagem , Neoplasias da Mama/diagnóstico por imagem , Hemoglobinas/química , Feminino , Humanos , Mamografia , Espectroscopia de Luz Próxima ao Infravermelho
12.
Biomed Opt Express ; 9(1): 55-71, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29359087

RESUMO

We present broadband measurements of the optical properties of tissue-mimicking solid phantoms using a single integrating sphere to measure the hemispherical reflectance and transmittance under a direct illumination at the normal incident angle. These measurements are traceable to reflectance and transmittance scales. An inversion routine using the output of the adding-doubling algorithm restricted to the reflectance and transmittance under a direct illumination was developed to produce the optical parameters of the sample along with an uncertainty budget at each wavelength. The results for two types of phantoms are compared to measurements by time-resolved approaches. The results between our method and these independent measurements agree within the estimated measurement uncertainties.

13.
Tomography ; 3(4): 188-200, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30042981

RESUMO

Diagnosis of early-stage acute kidney injury (AKI) will benefit from a timely identification of local tissue hypoxia. Renal tissue hypoxia is an early feature in AKI pathophysiology, and renal oxygenation is increasingly being assessed through T2*-weighted magnetic resonance imaging (MRI). However, changes in renal blood volume fraction (BVf) confound renal T2*. The aim of this study was to assess the feasibility of intravascular contrast-enhanced MRI for monitoring renal BVf during physiological interventions that are concomitant with variations in BVf and to explore the possibility of correcting renal T2* for BVf variations. A dose-dependent study of the contrast agent ferumoxytol was performed in rats. BVf was monitored throughout short-term occlusion of the renal vein, which is known to markedly change renal blood partial pressure of O2 and BVf. BVf calculated from MRI measurements was used to estimate oxygen saturation of hemoglobin (SO2). BVf and SO2 were benchmarked against cortical data derived from near-infrared spectroscopy. As estimated from magnetic resonance parametric maps of T2 and T2*, BVf was shown to increase, whereas SO2 was shown to decline during venous occlusion (VO). This observation could be quantitatively reproduced in test-retest scenarios. Changes in BVf and SO2 were in good agreement with data obtained from near-infrared spectroscopy. Our findings provide motivation to advance multiparametric MRI for studying AKIs, with the ultimate goal of translating MRI-based renal BVf mapping into clinical practice en route noninvasive renal magnetic resonance oximetry as a method of assessing AKI and progression to chronic damage.

14.
J Biomed Opt ; 21(9): 091311, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27403837

RESUMO

Diffuse optical imaging and spectroscopy of the female breast is an area of active research. We review the present status of this field and discuss the broad range of methodologies and applications. Starting with a brief overview on breast physiology, the remodeling of vasculature and extracellular matrix caused by solid tumors is highlighted that is relevant for contrast in optical imaging. Then, the various instrumental techniques and the related methods of data analysis and image generation are described and compared including multimodality instrumentation, fluorescence mammography, broadband spectroscopy, and diffuse correlation spectroscopy. We review the clinical results on functional properties of malignant and benign breast lesions compared to host tissue and discuss the various methods to improve contrast between healthy and diseased tissue, such as enhanced spectroscopic information, dynamic variations of functional properties, pharmacokinetics of extrinsic contrast agents, including the enhanced permeability and retention effect. We discuss research on monitoring neoadjuvant chemotherapy and on breast cancer risk assessment as potential clinical applications of optical breast imaging and spectroscopy. Moreover, we consider new experimental approaches, such as photoacoustic imaging and long-wavelength tissue spectroscopy.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Mama/diagnóstico por imagem , Mamografia , Imagem Óptica , Feminino , Humanos , Espectroscopia de Luz Próxima ao Infravermelho , Tomografia Óptica
15.
Sci Rep ; 6: 29965, 2016 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-27436132

RESUMO

The superparamagnetic iron oxide nanoparticle ferumoxytol is increasingly used as intravascular contrast agent in magnetic resonance imaging (MRI). This study details the impact of ferumoxytol on regulation of renal hemodynamics and oxygenation. In 10 anesthetized rats, a single intravenous injection of isotonic saline (used as volume control) was followed by three consecutive injections of ferumoxytol to achieve cumulative doses of 6, 10, and 41 mg Fe/kg body mass. Arterial blood pressure, renal blood flow, renal cortical and medullary perfusion and oxygen tension were continuously measured. Regulation of renal hemodynamics and oxygenation was characterized by dedicated interventions: brief periods of suprarenal aortic occlusion, hypoxia, and hyperoxia. None of the three doses of ferumoxytol resulted in significant changes in any of the measured parameters as compared to saline. Ferumoxytol did not significantly alter regulation of renal hemodynamics and oxygenation as studied by aortic occlusion and hypoxia. The only significant effect of ferumoxytol at the highest dose was a blunting of the hyperoxia-induced increase in arterial pressure. Taken together, ferumoxytol has only marginal effects on the regulation of renal hemodynamics and oxygenation. This makes ferumoxytol a prime candidate as contrast agent for renal MRI including the assessment of renal blood volume fraction.


Assuntos
Óxido Ferroso-Férrico/farmacologia , Hemodinâmica/efeitos dos fármacos , Rim/efeitos dos fármacos , Rim/fisiologia , Consumo de Oxigênio/efeitos dos fármacos , Circulação Renal/efeitos dos fármacos , Animais , Pressão Sanguínea/efeitos dos fármacos , Hipóxia/metabolismo , Hipóxia/fisiopatologia , Masculino , Ratos
16.
Biomed Opt Express ; 6(2): 309-23, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25780726

RESUMO

We hypothesize that combining quantitative near-infrared spectroscopy (NIRS) with established invasive techniques will enable advanced insights into renal hemodynamics and oxygenation in small animal models. We developed a NIRS technique to monitor absolute values of oxygenated and deoxygenated hemoglobin and of oxygen saturation of hemoglobin within the renal cortex of rats. This NIRS technique was combined with invasive methods to simultaneously record renal tissue oxygen tension and perfusion. The results of test procedures including occlusions of the aorta or the renal vein, hyperoxia, hypoxia, and hypercapnia demonstrated that the combined approach, by providing different but complementary information, enables a more comprehensive characterization of renal hemodynamics and oxygenation.

17.
J Biomed Opt ; 20(5): 051025, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25585232

RESUMO

We present a compact fluorescence imaging system developed for real-time sentinel lymph node mapping. The device uses two near-infrared wavelengths to record fluorescence and anatomical images with a single charge-coupled device camera. Experiments on lymph node and tissue phantoms confirmed that the amount of dye in superficial lymph nodes can be better estimated due to the absorption correction procedure integrated in our device. Because of the camera head's small size and low weight, all accessible regions of tissue can be reached without the need for any adjustments.


Assuntos
Neoplasias da Mama/patologia , Linfonodos/patologia , Imagem Óptica/instrumentação , Imagem Óptica/métodos , Biópsia de Linfonodo Sentinela/instrumentação , Biópsia de Linfonodo Sentinela/métodos , Neoplasias Cutâneas/patologia , Gráficos por Computador , Simulação por Computador , Meios de Contraste/química , Difusão , Desenho de Equipamento , Feminino , Humanos , Verde de Indocianina/química , Imagens de Fantasmas , Espectroscopia de Luz Próxima ao Infravermelho , Interface Usuário-Computador , Água/química
18.
Recent Results Cancer Res ; 187: 331-50, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23179887

RESUMO

Optical imaging offers a high potential for noninvasive detection of cancer in humans. Recent advances in instrumentation for diffuse optical imaging have led to new capabilities for the detection of cancer in highly scattering tissue such as the female breast. We review recent developments in the detection of breast cancer in humans by fluorescent contrast agents. So far, the unspecific contrast agents indocyanine green (ICG) and omocyanine have been applied, whereas molecular probes for direct targeted imaging of this disease are still in preclinical research. We discuss recent improvements in the differentiation of malignant and benign lesions with ICG based on its enhanced extravasation in breast cancer. Whereas fluorescence imaging in thick tissue layers is hampered by strong light scattering, tissue surfaces can be investigated with high spatial resolution. As an example for superficial tumors, lesions of the gastrointestinal tract (GI) are discussed. In these investigations, protoporphyrin IX is used as a tumor-specific (due to its strong enhancement in tumor cells) target for spectroscopic identification and imaging. We present a time-gated method for fluorescence imaging and spectroscopy with strong suppression of tissue autofluorescence and show results on patients with Barrett's esophagus and with colitis ulcerosa.


Assuntos
Neoplasias da Mama/patologia , Neoplasias Gastrointestinais/patologia , Feminino , Fluorescência , Humanos , Lasers
19.
Rev Sci Instrum ; 82(2): 024302, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21361617

RESUMO

We present a scanning time-domain fluorescence mammograph capable to image the distribution of a fluorescent contrast agent within a female breast, slightly compressed between two parallel glass plates, with high sensitivity. Fluorescence of the contrast agent is excited using a near infrared picosecond diode laser module. Four additional picosecond diode lasers with emission wavelengths between 660 and 1066 nm allow to measure the intrinsic optical properties of the breast tissue. By synchronously moving a source fiber and seven detection fiber bundles across the breast, distributions of times of flight of photons are recorded simultaneously for selected source-detector combinations in transmission and reflection geometry either at the fluorescence wavelength or at the selected laser wavelengths. To evaluate the performance of the mammograph, we used breastlike rectangular phantoms comprising fluorescent and absorbing objects using the fluorescent dye Omocyanine as contrast agent excited at 735 nm. We compare two-dimensional imaging of the phantom based on transmission and reflection data. Furthermore, we developed an improved tomosynthesis algorithm which permits three-dimensional reconstruction of fluorescence and absorption properties of lesions with good spatial resolution. For illustration, we present fluorescence mammograms of one patient recorded 30 min after administration of the contrast agent indocyanine green showing the carcinoma at high contrast originating from fluorescence of the extravasated dye, excited at 780 nm.


Assuntos
Mamografia/métodos , Algoritmos , Neoplasias da Mama/diagnóstico por imagem , Estudos de Viabilidade , Humanos , Imageamento Tridimensional , Limite de Detecção , Imagens de Fantasmas , Reprodutibilidade dos Testes , Espectrometria de Fluorescência , Fatores de Tempo
20.
Radiology ; 258(2): 409-16, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21177396

RESUMO

PURPOSE: To assess early- and late-fluorescence near-infrared imaging, corresponding to the vascular (early-fluorescence) and extravascular (late-fluorescence) phases of indocyanine green (ICG) enhancement, for breast cancer detection and benign versus malignant breast lesion differentiation. MATERIALS AND METHODS: The study was approved by the ethical review board; all participants provided written informed consent. Twenty women with 21 breast lesions were examined with near-infrared imaging before, during, and after intravenous injection of ICG. Absorption and fluorescence projection mammograms were recorded simultaneously on a prototype near-infrared imaging unit. Two blinded readers independently assessed the images and assigned visibility scores to lesions seen on the absorption and absorption-corrected fluorescence mammograms. Imaging results were compared with histopathologic findings. Lesion contrast and diameter on the fluorescence mammograms were measured, and Cohen κ, Mann-Whitney U, and Spearman ρ tests were conducted. RESULTS: The absorption-corrected fluorescence ratio mammograms showed high contrast (contrast value range, 0.25-0.64) between tumors and surrounding breast tissue. Malignant lesions were correctly defined in 11 (reader 1) and 12 (reader 2) of 13 cases, and benign lesions were correctly defined in six (reader 1) and five (reader 2) of eight cases with late-fluorescence imaging. Lesion visibility scores for malignant and benign lesions were significantly different on the fluorescence ratio mammograms (P = .003) but not on the absorption mammograms (P = .206). Mean sensitivity and specificity reached 92% ± 8 (standard error of mean) and 75% ± 16, respectively, for fluorescence ratio imaging compared with 100% ± 0 and 25% ± 16, respectively, for conventional mammography alone. CONCLUSION: Preliminary data suggest that early- and late-fluorescence ratio imaging after ICG administration can be used to distinguish malignant from benign breast lesions.


Assuntos
Neoplasias da Mama/diagnóstico , Corantes , Verde de Indocianina , Espectroscopia de Luz Próxima ao Infravermelho , Adulto , Idoso , Idoso de 80 Anos ou mais , Neoplasias da Mama/patologia , Corantes/farmacocinética , Diagnóstico Diferencial , Feminino , Humanos , Verde de Indocianina/farmacocinética , Mamografia , Pessoa de Meia-Idade , Estatísticas não Paramétricas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...