Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Angew Chem Int Ed Engl ; 60(7): 3799-3805, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33105066

RESUMO

Pt-based materials are widely used as heterogeneous catalysts, in particular for pollutant removal applications. The state of Pt has often been proposed to differ depending on experimental conditions, for example, metallic Pt poisoned with CO being present at lower temperature before light-off, while an oxidized Pt surface prevails above light-off temperature. In stark contrast to all previous reports, we show herein that both metallic and oxidized Pt are present in similar proportions under reaction conditions at the surface of ca. 1 nm nanoparticles showing high activity at 30 °C. The simultaneous presence of metallic and oxidized Pt enables a synergy between these phases. The main role of the metallic Pt phase is to provide strong adsorption sites for CO, while that of oxidized Pt supposedly supplies reactive oxygen. Our results emphasize the complex dual oxidic-metallic nature of supported Pt catalysts and platinum's evolving nature under reaction conditions.

3.
Dalton Trans ; 47(23): 7634-7639, 2018 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-29796509

RESUMO

Inorganic nanocomposites made of an inorganic matrix containing nanoparticle inclusions provide materials of advanced mechanical, magnetic, electrical properties and multifunctionality. The range of compounds that can be implemented in nanocomposites is still narrow and new preparation methods are required to design such advanced materials. Herein, we describe how the combination of nanocrystal synthesis in molten salts with subsequent heat treatment at a pressure in the GPa range gives access to a new family of boron-based nanocomposites. With the case studies of HfB2/ß-HfB2O5 and CaB6/CaB2O4(iv), we demonstrate by X-ray diffraction and through (scanning) transmission electron microscopy the crystallization of borate matrices into rare compounds and unique nanostructured solids, while metal boride nanocrystals remain dispersed in the matrix and maintain small sizes below 30 nm, thus demonstrating a new multidisciplinary approach toward nanoscaled heterostructures.

4.
Acc Chem Res ; 51(4): 930-939, 2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29533580

RESUMO

The design of inorganic nanoparticles relies strongly on the knowledge from solid-state chemistry not only for characterization techniques, but also and primarily for choosing the systems that will yield the desired properties. The range of inorganic solids reported and studied as nanoparticles is however strikingly narrow when compared to the solid-state chemistry portfolio of bulk materials. Efforts to enlarge the collection of inorganic particles are becoming increasingly important for three reasons. First, they can yield materials more performing than current ones for a range of fields including biomedicine, optics, catalysis, and energy. Second, looking outside the box of common compositions is a way to target original properties or to discover genuinely new behaviors. The third reason lies in the path followed to reach these novel nano-objects: exploration and setup of new synthetic approaches. Indeed, willingness to access original nanoparticles faces a synthetic challenge: how to reach nanoparticles of solids that originally belong to the realm of solid-state chemistry and its typical protocols at high temperature? To answer this question, alternative reaction pathways must be sought, which may in turn provide tracks for new, untargeted materials. The corresponding strategies require limiting particle growth by confinement at high temperatures or by decreasing the synthesis temperature. Both approaches, especially the latter, provide a nice playground to discover metastable solids never reported before. The aim of this Account is to raise attention to the topic of the design of new inorganic nanoparticles. To do so, we take the perspective of our own work in the field, by first describing synthetic challenges and how they are addressed by current protocols. We then use our achievements to highlight the possibilities offered by new nanomaterials and to introduce synthetic approaches that are not in the focus of recent literature but hold, in our opinion, great promise. We will span methods of low temperature "chimie douce" aqueous synthesis coupled to microwave heating, sol-gel chemistry and processing coupled to solid state reactions, and then molten salt synthesis. These protocols pave the way to metastable low valence oxyhydroxides, vanadates, perovskite oxides, boron carbon nitrides, and metal borides, all obtained at the nanoscale with structural and morphological features differing from "usual" nanomaterials. These nano-objects show original properties, from sensing, thermoelectricity, charge and spin transports, photoluminescence, and catalysis, which require advanced characterization of surface states. We then identify future trends of synthetic methodologies that will merit further attention in this burgeoning field, by emphasizing the importance of unveiling reaction mechanisms and coupling experiments with modeling.

5.
Chemistry ; 19(50): 17097-102, 2013 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-24194455

RESUMO

In this paper we describe a new class of antiaromatic planar cyclooctatetraenes: the diazadioxa[8]circulenes. The synthesis was achieved by means of a new acid-mediated oxidative dimerization of 3,6-dihydroxycarbazoles to yield the diazadioxa[8]circulenes in high yields. The synthetic protocol appears to be general, and is a one-pot transformation in which two C-C bonds and two C-O bonds are formed with the loss of two molecules of water. We also present a detailed characterization of the optical and electrochemical properties of this new class of stable planar cyclooctatetraenes. The properties of the diazadioxa[8]circulenes are compared with the properties of isoelectronic tetraoxa[8]circulenes and azatrioxa[8]circulenes. We discuss the antiaromatic nature of the planar central cyclooctatetraene moiety. The antiaromatic nature of the planar cyclooctatetraenes was studied by using computational methods (NICS calculations), and these calculations reveal that the central eight-membered ring has antiaromatic character.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...