Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Epilepsia Open ; 8(1): 100-112, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36461649

RESUMO

OBJECTIVE: High-resolution (1 mm isotropic) diffusion tensor imaging (DTI) of the hippocampus in temporal lobe epilepsy (TLE) patients has shown patterns of hippocampal subfield diffusion abnormalities, which were consistent with hippocampal sclerosis (HS) subtype on surgical histology. The objectives of this longitudinal imaging study were to determine the stability of focal hippocampus diffusion changes over time in TLE patients, compare diffusion and quantitative T2 abnormalities of the sclerotic hippocampus, and correlate presurgical mean diffusivity (MD) and T2 maps with postsurgical histology. METHODS: Nineteen TLE patients and 19 controls underwent two high-resolution (1 mm isotropic) DTI and 1.1 × 1.1 × 1 mm3  T2 relaxometry scans (in a subset of 16 TLE patients and 9 controls) of the hippocampus at 3T, with a 2.6 ± 0.8 year inter-scan interval. Within-participant hippocampal volume, MD and T2 were compared between the scans. Contralateral hippocampal changes 2.3 ± 1.0 years after surgery and ipsilateral preoperative MD maps versus postoperative subfield histopathology were evaluated in eight patients who underwent surgical resection of the hippocampus. RESULTS: Reduced volume and elevated MD and T2 of sclerotic hippocampi remained unchanged between longitudinal scans. Focal regions of elevated MD and T2 in bilateral hippocampi of HS TLE were detected consistently at both scans. Regions of high MD and T2 correlated and remained consistent over time. Volume, MD, and T2 remained unchanged in postoperative contralateral hippocampus. Regional elevations of MD identified subfield neuron loss on postsurgical histology with 88% sensitivity and 88% specificity. Focal T2 elevations identified subfield neuron loss with 75% sensitivity and 88% specificity. SIGNIFICANCE: Diffusion and T2 abnormalities in ipsilateral and contralateral hippocampi remained unchanged between the scans suggesting permanent microstructural alterations. MD and T2 demonstrated good sensitivity and specificity to detect hippocampal subfield neuron loss on postsurgical histology, supporting the potential that high-resolution hippocampal DTI and T2 could be used to diagnose HS subtype before surgery.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/cirurgia , Imagem de Tensor de Difusão/métodos , Imagem de Difusão por Ressonância Magnética/métodos , Hipocampo/patologia , Hipocampo/cirurgia , Estudos Longitudinais , Esclerose/patologia
2.
Epilepsy Res ; 161: 106279, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32105992

RESUMO

OBJECTIVE: Neuropathological studies indicate that hippocampal sclerosis (HS) consists of three subtypes (ILAE types 1-3 HS). However, HS subtypes currently can only be diagnosed by pathological analysis of hippocampal tissue resected during epilepsy surgery or at autopsy. In vivo diagnosis of HS subtypes holds potential to improve our understanding of these variants in the ipsilateral as well as contralateral hippocampus. In this study, we aimed to: i) evaluate the reliability of our histology-derived segmentation protocol when applied to in vivo MRI; and ii) characterize variability of HS subtypes along the hippocampal long axis in patients with epilepsy. METHODS: Eleven subjects with unilateral HS were compared with ten healthy controls. We used 4.7 T MRI to acquire high resolution MR Images of the hippocampus in each subject. In vivo MRI-based diagnoses of HS subtypes were then determined in each patient by two methods: i) hippocampal subfield volumetry of the entire hippocampal body; and ii) subfield area analysis at multiple thin slices throughout the hippocampal body. RESULTS: Hippocampal body subfield segmentation demonstrated excellent reliability and volumetry of the symptomatic hippocampus revealed abnormalities in all eleven patients. Six subjects demonstrated findings consistent with type 1 HS while five subjects had volumetry-defined atypical HS (two with type 2 HS & three with type 3 HS) in the symptomatic hippocampus, while five subjects were found to have type 3 HS in the contralateral hippocampus. Subfield area analyses demonstrated remarkable variability of HS subtypes along the hippocampal long axis, both ipsilateral and contralateral to the seizure focus. SIGNIFICANCE: Our results provide preliminary evidence that determining HS Subtype using in vivo MRI may allow preoperative diagnosis of ILAE HS subtypes. Further studies are essential to determine the pathological correlates of these neuroimaging findings. The heterogeneity of abnormalities observed along the long axis of the hippocampus is consistent with previous autopsy studies and highlights the necessity of studying the entire hippocampus both ipsilateral and contralateral to the seizure focus in these future studies.


Assuntos
Epilepsia do Lobo Temporal/cirurgia , Hipocampo/patologia , Esclerose/patologia , Convulsões/patologia , Adulto , Epilepsia do Lobo Temporal/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Adulto Jovem
3.
Epilepsy Behav Rep ; 12: 100346, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31799509

RESUMO

We report a case of a 52-year-old man with drug-resistant temporal lobe epilepsy, with post-ictal violent aggressive behaviors. Postictal violent outbursts would occur 3-4 times per year following clusters of seizures or generalized tonic-clonic convulsions. The violent outbursts were traumatizing for his family, and lead to multiple emergency department presentations as well as conflicts with police over the course of nine years. After initiation of pindolol the patient has had no episodes of violent behavior in two years despite experiencing the same frequency and severity of seizures as before pindolol. The abrupt cessation of postictal violent outbursts after introduction of pindolol in this case provides a novel management option for the treatment of postictal violence in patients with drug-resistant epilepsy and supports the importance of the beta adrenergic and potentially serotonergic systems in postictal violent behavior.

4.
Epilepsia Open ; 4(4): 544-554, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31819910

RESUMO

OBJECTIVE: Hippocampal sclerosis (HS) is the most common pathology and best predictor of surgical outcome for medically refractory patients with temporal lobe epilepsy (TLE). Current clinical MRI methods can detect HS, but subfield pathology is poorly characterized, limiting accurate prediction of seizure-free outcomes after surgery. Diffusion tensor imaging (DTI) can probe regional microstructural changes associated with focal hippocampal pathology, but is typically limited by low-resolution whole-brain acquisitions. METHODS: High-resolution (1 × 1 × 1 mm3) DTI, T1, and quantitative T2 of the hippocampus was acquired in 18 preoperative TLE patients and 19 healthy controls. Diffusion images were qualitatively assessed for loss of internal architecture, and whole-hippocampus diffusion, volume, and quantitative T2 were compared across groups. Regional hippocampal diffusion abnormalities were examined in all subjects and compared to histology in four subjects who underwent anterior temporal lobectomy. RESULTS: High-resolution mean diffusion-weighted images enabled visualization of internal hippocampal architecture, used to visually identify HS with 86% specificity and 93% sensitivity. Mean diffusivity (MD) elevations were regionally heterogenous within the hippocampus and varied across TLE patients. The spatial location of diffusion abnormalities corresponded with the location of focal subfield neuron loss, gliosis, and reduced myelin staining abnormalities identified with postsurgical histology in four subjects who underwent anterior temporal lobectomy. Whole-hippocampus MD and T2 relaxation times were higher, and fractional anisotropy (FA) and volumes were lower in TLE patients relative to controls. Left hippocampus MD correlated with verbal memory in the TLE group. SIGNIFICANCE: Visualization of internal architecture and focal diffusion abnormalities on high-resolution diffusion imaging suggests potential clinical utility of diffusion imaging in TLE and may have significant implications for surgical planning and prediction of seizure-free outcomes in individual patients.

5.
J Neurosurg ; : 1-10, 2019 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-31419798

RESUMO

OBJECTIVE: Diffusion tensor imaging (DTI) tractography is commonly used in neurosurgical practice but is largely limited to the preoperative setting. This is due primarily to image degradation caused by susceptibility artifact when conventional single-shot (SS) echo-planar imaging (EPI) DTI (SS-DTI) is acquired for open cranial, surgical position intraoperative DTI (iDTI). Readout-segmented (RS) EPI DTI (RS-DTI) has been reported to reduce such artifact but has not yet been evaluated in the intraoperative MRI (iMRI) environment. The authors evaluated the performance of RS versus SS EPI for DTI of the human brain in the iMRI setting. METHODS: Pre- and intraoperative 3-T 3D T1-weighted and 2D multislice RS-iDTI (called RESOLVE [readout segmentation of long variable echo-trains] on the Siemens platform) and SS-iDTI images were acquired in 22 adult patients undergoing intraaxial iMRI resections for suspected low-grade glioma (14; 64%), high-grade glioma (7; 32%), or focal cortical dysplasia. Regional susceptibility artifact, anatomical deviation relative to T1-weighted imaging, and tractographic output for surgically relevant tracts were compared between iDTI sequences as well as the intraoperative tract shifts from preoperative DTI. RESULTS: RS-iDTI resulted in qualitatively less regional susceptibility artifact (resection cavity, orbitofrontal and anterior temporal cortices) and mean anatomical deviation in regions most prone to susceptibility artifact (RS-iDTI 2.7 ± 0.2 vs SS-iDTI 7.5 ± 0.4 mm) compared to SS-iDTI. Although tract reconstruction success did not significantly differ by DTI method, susceptibility artifact-related tractography failure (of at least 1 surgically relevant tract) occurred for SS-iDTI in 8/22 (36%) patients, and in 5 of these 8 patients RS-iDTI permitted successful reconstruction. Among cases with successful tractography for both sequences, maximal intersequence differences were substantial (mean 9.5 ± 5.7 mm, range -27.1 to 18.7 mm). CONCLUSIONS: RS EPI enables higher quality and more accurate DTI for surgically relevant tractography of major white matter tracts in intraoperative, open cranium neurosurgical applications at 3 T.

6.
Neuroimage ; 182: 479-487, 2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29395905

RESUMO

The human hippocampus is a key target of many imaging studies given its capacity for neurogenesis, role in long term potentiation and memory, and nearly ubiquitous involvement in neurological and psychiatric conditions. Diffusion tensor imaging (DTI) has detected microstructural abnormalities of the human hippocampus associated with various disorders, but acquisitions have typically been limited to low spatial resolution protocols designed for whole brain (e.g. > 2 mm isotropic, >8 mm3 voxels), limiting regional specificity and worsening partial volume effects. The purpose here was to develop a simple DTI protocol using readily available standard single-shot EPI at 3T, capable of yielding much higher spatial resolution images (1 x 1 x 1 mm3) of the human hippocampus in a 'clinically feasible' scan time of ~6 min. A thin slab of twenty 1 mm slices oriented along the long axis of the hippocampus enabled efficient coverage and a shorter repetition time, allowing more diffusion weighted images (DWIs) per slice per unit time. In combination with this strategy, a low b value of 500 s/mm2 was chosen to help overcome the very low SNR of a 1 x 1 x 1 mm3 EPI acquisition. 1 mm isotropic mean DWIs (averaged over 120-128 DWIs) showed excellent detail of the hippocampal architecture (e.g. morphology and digitations, sub-regions, stratum lacunosum moleculare - SLM) that was not readily visible on 2 mm isotropic diffusion images. Diffusion parameters within the hippocampus were consistent across subjects and fairly homogenous across sub-regions of the hippocampus (with the exception of the SLM and tail). However, it is expected that DTI parameters will be sensitive to microstructural changes associated with a number of clinical disorders (e.g. epilepsy, dementia) and that this practical, translatable approach for high resolution acquisition will facilitate localized detection of hippocampal pathology.


Assuntos
Imagem de Tensor de Difusão/métodos , Hipocampo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Adulto , Humanos
7.
Epilepsy Res ; 140: 128-137, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29331847

RESUMO

OBJECTIVES: 1) Characterize the evolution of microstructural changes in the contralateral, non-operated hippocampus-using longitudinal diffusion tensor imaging (DTI)-following surgery for temporal lobe epilepsy (TLE). 2) Characterize the downstream extra-hippocampal volumetric changes of the fornix and mammillary bodies after TLE surgery. 3) Examine the relationship between these measures and seizure/cognitive outcome. METHODS: Serial structural and DTI brain MRI scans were collected in 25 TLE patients pre- and post-surgery (anterior temporal lobectomy, ATL - 13; selective amygdalohippocampectomy, SelAH - 12) and in 12 healthy controls. Contralateral hippocampal fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity (RD) were computed with manual hippocampal tracings as volumes of interest following co-registration to anatomical images. Fornix and mammillary body volumetry was performed by manual segmentation. RESULTS: After surgery, the non-resected hippocampus showed significant postoperative decline in FA (p = 0.0001), with increase of MD (p = 0.01) and RD (p = 0.0001). In contrast to the timing of our previously reported volume changes where atrophy is observed in the first week, diffusion changes occurred late, taking 1-3 years to develop and are not significant at one week after surgery. Diffusion changes are accompanied by delayed limbic circuit volume loss in the mammillary bodies (35%; p < 0.0001) and fornix (24%; p < 0.0001) compared to baseline. There was no correlation between postoperative diffusion or structural changes and memory score nor did the degree of postoperative change in hippocampal DTI parameters, mammillary body volume or fornix volume vary significantly based on seizure outcome. SIGNIFICANCE: Differences observed in the timing of postoperative volume (first week) and FA/MD (one year) changes would suggest that early contralateral hippocampal atrophy is not secondary to fluid shifts (dehydration) while the late DTI changes suggest ongoing microstructural changes extending beyond the early postoperative period. Postoperative hippocampal diffusion changes are accompanied by delayed mammillary body and fornix volume loss which did not differ when stratified by seizure outcome nor was correlated with degree of hippocampal diffusion change. Finally, we did not identify any significant correlation between postoperative diffusion parameter change and memory performance.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/diagnóstico por imagem , Adulto , Lobectomia Temporal Anterior , Cognição , Imagem de Tensor de Difusão , Epilepsia Resistente a Medicamentos/psicologia , Epilepsia do Lobo Temporal/psicologia , Feminino , Fórnice/diagnóstico por imagem , Fórnice/patologia , Hipocampo/patologia , Hipocampo/cirurgia , Humanos , Estudos Longitudinais , Masculino , Corpos Mamilares/diagnóstico por imagem , Corpos Mamilares/patologia , Pessoa de Meia-Idade , Tamanho do Órgão , Resultado do Tratamento , Adulto Jovem
8.
Neuroimage ; 157: 219-232, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28587896

RESUMO

BACKGROUND: Recent findings have demonstrated that hippocampal subfields can be selectively affected in different disease states, which has led to efforts to segment the human hippocampus with in vivo magnetic resonance imaging (MRI). However, no studies have examined the histological accuracy of subfield segmentation protocols. The presence of MRI-visible anatomical landmarks with known correspondence to histology represents a fundamental prerequisite for in vivo hippocampal subfield segmentation. In the present study, we aimed to: 1) develop a novel method for hippocampal body segmentation, based on two MRI-visible anatomical landmarks (stratum lacunosum moleculare [SLM] & dentate gyrus [DG]), and assess its accuracy in comparison to the gold standard direct histological measurements; 2) quantify the accuracy of two published segmentation strategies in comparison to the histological gold standard; and 3) apply the novel method to ex vivo MRI and correlate the results with histology. METHODS: Ultra-high resolution ex vivo MRI was performed on six whole cadaveric hippocampal specimens, which were then divided into 22 blocks and histologically processed. The hippocampal bodies were segmented into subfields based on histological criteria and subfield boundaries and areas were directly measured. A novel method was developed using mean percentage of the total SLM distance to define subfield boundaries. Boundary distances and subfield areas on histology were then determined using the novel method and compared to the gold standard histological measurements. The novel method was then used to determine ex vivo MRI measures of subfield boundaries and areas, which were compared to histological measurements. RESULTS: For direct histological measurements, the mean percentages of total SLM distance were: Subiculum/CA1 = 9.7%, CA1/CA2 = 78.4%, CA2/CA3 = 97.5%. When applied to histology, the novel method provided accurate measures for CA1/CA2 (ICC = 0.93) and CA2/CA3 (ICC = 0.97) boundaries, but not for the Subiculum/CA1 (ICC = -0.04) boundary. Accuracy was poorer using previous techniques for CA1/CA2 (maximum ICC = 0.85) and CA2/CA3 (maximum ICC = 0.88), with the previously reported techniques also performing poorly in defining the Subiculum/CA1 boundary (maximum ICC = 0.00). Ex vivo MRI measurements using the novel method were linearly related to direct measurements of SLM length (r2 = 0.58), CA1/CA2 boundary (r2 = 0.39) and CA2/CA3 boundary (r2 = 0.47), but not for Subiculum/CA1 boundary (r2 = 0.01). Subfield areas measured with the novel method on histology and ex vivo MRI were linearly related to gold standard histological measures for CA1, CA2, and CA3/CA4/DG. CONCLUSIONS: In this initial proof of concept study, we used ex vivo MRI and histology of cadaveric hippocampi to develop a novel segmentation protocol for the hippocampal body. The novel method utilized two anatomical landmarks, SLM & DG, and provided accurate measurements of CA1, CA2, and CA3/CA4/DG subfields in comparison to the gold standard histological measurements. The relationships demonstrated between histology and ex vivo MRI supports the potential feasibility of applying this method to in vivo MRI studies.


Assuntos
Hipocampo/anatomia & histologia , Técnicas Histológicas/métodos , Imageamento por Ressonância Magnética/métodos , Idoso , Idoso de 80 Anos ou mais , Protocolos Clínicos , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Pessoa de Meia-Idade , Reprodutibilidade dos Testes
9.
J Neuropathol Exp Neurol ; 76(3): 206-215, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28395090

RESUMO

Immune mechanisms have been increasingly recognized in the pathogenesis of hippocampal sclerosis (HS), but infiltration of cytotoxic T-cells and its pathological significance in patients with HS has not been explored. We examined 30 cases of surgically resected hippocampi, including 16 International League Against Epilepsy (ILAE) type 1, 9 ILAE type 2, 1 ILAE type 3 HS, and 4 ILAE No-HS, as well as 6 autopsy No-HS hippocampi. The HS hippocampi showed sparse to scattered CD8-positive T-cells, rare CD4-positive T-cells, and a modest increase in CD68-positive microglia/macrophages, which were significantly more numerous than those in the No-HS controls. The infiltration of CD8-positive T-cells was significantly greater in the CA1 subfield than other subfields of type 1 and type 2 HS. The numbers of CD8-positive T-cells positively correlated with those of CD4-positive T-cells; there was a lower ratio of CD4/CD8-positive T-cells. There were positive correlations between these cells and scores of neuronal loss but no significant correlation between the infiltration of these cells and epilepsy disease duration or age of epilepsy onset. These findings suggest that an autoimmune process may be involved in the pathogenesis of HS and infiltration of immune cells, particularly CD8-positive cytotoxic T-cells, may contribute to neuronal loss in HS.


Assuntos
Linfócitos T CD8-Positivos/metabolismo , Epilepsia/metabolismo , Hipocampo/metabolismo , Imunidade Celular/fisiologia , Neurônios/metabolismo , Adolescente , Adulto , Idoso , Pré-Escolar , Epilepsia/patologia , Feminino , Hipocampo/patologia , Humanos , Masculino , Pessoa de Meia-Idade , Neurônios/patologia , Estudos Retrospectivos , Esclerose/metabolismo , Esclerose/patologia , Adulto Jovem
10.
Epilepsy Res ; 125: 62-71, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27394376

RESUMO

OBJECTIVE: Determine the extent and time course of volumetric changes in the contralateral hippocampus following surgery for medically refractory temporal lobe epilepsy (TLE). METHODS: Serial T1-weighted MRI brain scans were obtained in 26 TLE patients pre- and post-temporal lobe epilepsy surgery as well as in 12 control subjects of similar age. Patients underwent either anterior temporal lobectomy (ATL) or selective amygdalohippocampectomy (SAH). Blinded, manual hippocampal volumetry (head, body, and tail) was performed in two groups: 1) two scan group [ATL (n=6); SAH (n=10)], imaged pre-surgery and on average at 5.4 years post-surgery; and 2) longitudinal group [ATL (n=8); SAH (n=2)] imaged pre-surgery and on post-operative day 1, 2, 3, 6, 60, 120 and a delayed time point (average 2.4 years). RESULTS: In the two scan group, there was atrophy by 12% of the unresected contralateral hippocampus (p<0.001), with atrophy being most pronounced (27%) in the hippocampal body (p<0.001) with no significant differences seen for the hippocampal head or tail. In the longitudinal group, significant atrophy was also observed for the whole hippocampus and the body with atrophy seen as early as post-operative day #1 which progressed significantly over the first post-operative week (1.3%/day and 3.0%./day, respectively) before stabilizing over the long-term to a 13% reduction in total volume. There was no significant difference in atrophy compared by surgical approach (ATL vs. SAH; p=0.94) or side (p=0.31); however, atrophy was significantly more pronounced in patients with ongoing post-operative seizures (hippocampal body, p=0.019; whole hippocampus, p=0.048). There were no detectable post-operative neuropsychological deficits attributable to contralateral hippocampal atrophy. SIGNIFICANCE: Significant contralateral hippocampal atrophy occurs following TLE surgery, which begins immediately and progresses over the first post-operative week. The observation that seizure free patients had significantly less atrophy of the contralateral hippocampus after surgery suggests the possibility of an early post-operative imaging marker to predict surgical outcome.


Assuntos
Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Hipocampo/diagnóstico por imagem , Complicações Pós-Operatórias/diagnóstico por imagem , Adulto , Lobectomia Temporal Anterior , Atrofia/diagnóstico por imagem , Atrofia/etiologia , Atrofia/fisiopatologia , Atrofia/psicologia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/psicologia , Epilepsia do Lobo Temporal/fisiopatologia , Epilepsia do Lobo Temporal/psicologia , Feminino , Lateralidade Funcional , Hipocampo/fisiopatologia , Humanos , Estudos Longitudinais , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Testes Neuropsicológicos , Tamanho do Órgão , Complicações Pós-Operatórias/fisiopatologia , Complicações Pós-Operatórias/psicologia , Reprodutibilidade dos Testes , Resultado do Tratamento , Adulto Jovem
11.
Epilepsy Behav ; 50: 162-70, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26159729

RESUMO

Recent years have witnessed a paradigm shift in the study and conceptualization of epilepsy, which is increasingly understood as a network-level disorder. An emblematic case is temporal lobe epilepsy (TLE), the most common drug-resistant epilepsy that is electroclinically defined as a focal epilepsy and pathologically associated with hippocampal sclerosis. In this review, we will summarize histopathological, electrophysiological, and neuroimaging evidence supporting the concept that the substrate of TLE is not limited to the hippocampus alone, but rather is broadly distributed across multiple brain regions and interconnecting white matter pathways. We will introduce basic concepts of graph theory, a formalism to quantify topological properties of complex systems that has recently been widely applied to study networks derived from brain imaging and electrophysiology. We will discuss converging graph theoretical evidence indicating that networks in TLE show marked shifts in their overall topology, providing insight into the neurobiology of TLE as a network-level disorder. Our review will conclude by discussing methodological challenges and future clinical applications of this powerful analytical approach.


Assuntos
Encéfalo/patologia , Epilepsia do Lobo Temporal/diagnóstico , Modelos Teóricos , Rede Nervosa/patologia , Animais , Encéfalo/fisiopatologia , Epilepsia/diagnóstico , Epilepsia/fisiopatologia , Epilepsia do Lobo Temporal/fisiopatologia , Hipocampo/patologia , Humanos , Rede Nervosa/fisiopatologia , Neuroimagem/métodos
12.
Epilepsia ; 56(1): 125-32, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25545559

RESUMO

OBJECTIVE: To evaluate white matter (WM) integrity of distinct groups of patients with antiepileptic drug (AED)-resistant localization-related epilepsies. METHODS: We used diffusion tensor imaging (DTI) fiber-tractography and voxel-based morphometry (VBM) to investigate differences of WM micro- and macrostructural integrity in patients with different drug-resistant localization-related epilepsies: 17 with temporal lobe epilepsy with magnetic resonance imaging (MRI) signs of hippocampal sclerosis (TLE-HS), 17 with TLE and normal MRI (TLE-NL), 14 with frontal lobe epilepsy and subtle MRI signs of focal cortical dysplasia (FLE-FCD), and 112 healthy controls. We performed fiber-tractography using a semiautomatic deterministic method to yield average fractional anisotropy (FA), axial (AD), and radial (RD) diffusivity ipsilateral and contralateral to the epileptogenic zone of the following tracts based on their functional and anatomic relevance: body of fornix (BoF), body of cingulum (BoC), inferior frontal occipital (IFO), and uncinate fasciculi (UF). In addition, we performed VBM of the WM maps to assess macrostructural integrity differences among groups. RESULTS: TLE-HS had ipsilateral and contralateral decreased FA and increased RD for all tracts. VBM showed WM alterations mainly in the ipsilateral parahippocampal region and contralateral superior temporal gyrus. FLE-FCD showed bilateral FA decreases only in the BoC and ipsilateral RD increases also in the BoC. VBM showed WM reduction mainly in the ipsilateral precuneus and posterior and anterior cingulum. No significant WM alterations were found in the TLE-NL in DTI or VBM analysis. SIGNIFICANCE: WM abnormalities differ in distinct AED-resistant localization-related epilepsies. The diverse distribution of the WM damage in these patients suggests that the localization of the epileptic networks may play a role in the WM burden. However, the distinct degree of this damage, more accentuated in TLE-HS, also suggests that the underlying cause of the epilepsy is probably an additional factor to explain this WM damage.


Assuntos
Epilepsia do Lobo Frontal/patologia , Epilepsia do Lobo Temporal/patologia , Hipocampo/patologia , Malformações do Desenvolvimento Cortical/patologia , Substância Branca/patologia , Adulto , Anticonvulsivantes/uso terapêutico , Encéfalo/patologia , Estudos de Casos e Controles , Imagem de Tensor de Difusão , Resistência a Medicamentos , Epilepsia do Lobo Frontal/complicações , Epilepsia do Lobo Frontal/tratamento farmacológico , Epilepsia do Lobo Temporal/tratamento farmacológico , Feminino , Fórnice/patologia , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/complicações , Pessoa de Meia-Idade , Tamanho do Órgão , Esclerose , Adulto Jovem
13.
Epilepsy Res ; 108(9): 1533-42, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25260933

RESUMO

PURPOSE: Diffusion tensor imaging (DTI) is a magnetic resonance imaging (MRI) technique that can characterize white matter (WM) architecture and microstructure. DTI has demonstrated extensive WM changes in patients with several epileptic syndromes, but few studies have focused on patients with malformations of cortical development (MCD). Our aim was to investigate the quantitative diffusion properties of the corpus callosum (CC), a major commissural bundle critical in inter-hemispheric connectivity, in a large group of patients with MCD. METHODS: Thirty-two MCD patients and 32 age and sex-matched control subjects were evaluated with DTI at 3.0 T. We analyzed the three major subdivisions of the CC (genu, body, and splenium) with deterministic tractography to yield fractional anisotropy (FA), mean diffusivity (MD), parallel diffusivity (λ||) and perpendicular diffusivity (λ⊥). We further assessed the CC with region of interest (ROI)-based analyses and evaluated different subgroups of MCD (polymicrogyria/schizencephaly, heterotopia, and cortical dysplasia). Partial correlations between diffusion changes and clinical parameters (epilepsy duration and age at disease onset) were also queried. RESULTS: There were significant reductions of FA, accompanied by increases in MD and λ⊥ in all segments of the CC in the patients group with both analytical methods. The absolute differences in FA were greater on ROI-analyses. There were no significant differences between the MCD subgroups, and no correlations between clinical parameters of epilepsy and FA. CONCLUSIONS: Our study indicates DTI abnormalities consistent with microstructural changes in the corpus callosum of MCD patients. The findings support the idea that patients with epilepsy secondary to cortical malformations present widespread WM changes that extend beyond the macroscopic MRI-visible lesions.


Assuntos
Corpo Caloso/patologia , Imagem de Tensor de Difusão , Epilepsia/diagnóstico , Malformações do Desenvolvimento Cortical/diagnóstico , Adolescente , Adulto , Anisotropia , Criança , Epilepsia/complicações , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Masculino , Malformações do Desenvolvimento Cortical/complicações , Pessoa de Meia-Idade , Análise Multivariada , Adulto Jovem
14.
Epilepsy Res ; 108(8): 1279-85, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25107686

RESUMO

BACKGROUND: The utility of MRI-based hippocampal subfield volumetry as a diagnostic test for hippocampal sclerosis (HS) is based on the hypothesis that specific hippocampal subfields are differentially affected in HS. While qualitative studies suggest selective involvement of certain hippocampal subfields in this condition, whether quantifiable differences exist remains unclear. Neuronal density measurement is the most widely used technique for measuring subfield pathological change in HS. Therefore, a systematic review and meta-analysis of studies reporting neuronal densities in temporal lobe epilepsy was performed in order to quantify subfield pathology in hippocampal sclerosis. METHODS: Studies were identified by searching the Medline and Embase databases using the search terms: cell count, hippocampus, and epilepsy. Of the 192 studies identified by the literature search, seven met all inclusion and exclusion criteria. Random effects meta-analyses were performed, comparing: (i) neuronal densities in control (n=121) versus HS (n=371) groups for subfields CA1-4; and (ii) amount of neuronal loss in HS between subfields CA1-4. RESULTS: Statistically significant neuronal loss was observed comparing HS to control groups in all subfields CA1-4 (p<0.001 for all comparisons). Significantly greater neuronal loss was demonstrated in HS comparing CA1 versus CA2 (p<0.001), CA3 (p=0.005), and CA4 (p=0.003). Greater pyramidal cell loss was also demonstrated in CA3 relative to the CA2 subfield (p=0.003). No significant differences were identified comparing CA2 and CA4 (p=0.39); or comparing CA3 and CA4 (p=0.64). CONCLUSIONS: HS is characterized by pathology in all hippocampal subfields. Quantifiable differences exist in the involvement of specific hippocampal subfields in HS. Neuronal loss is greatest in CA1, intermediate in CA3 and CA4, and least in CA2. Further studies are required to determine if this pattern can be detected using in vivo MRI.


Assuntos
Epilepsia/patologia , Hipocampo/patologia , Neurônios/patologia , Contagem de Células/métodos , Epilepsia/etiologia , Humanos , Esclerose/complicações , Esclerose/patologia
15.
Can J Neurol Sci ; 41(4): 413-20, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24878463

RESUMO

BACKGROUND: Epilepsy is a common medical condition for which physicians perform driver fitness assessments. The Canadian Medical association (CMA) and the Canadian Council of Motor transportation administrators (CCMTA) publish documents to guide Canadian physicians' driver fitness assessments. OBJECTIVES: We aimed to measure the consistency of driver fitness counseling among epileptologists in Canada, and to determine whether inconsistencies between national guidelines are associated with greater variability in counseling instructions. METHODS: We surveyed 35 epileptologists in Canada (response rate 71%) using a questionnaire that explored physicians' philosophies about driver fitness assessments and counseling practices of seizure patients in common clinical scenarios. Of the nine scenarios, CCMTA and CMA recommendations were concordant for only two. Cumulative agreement for all scenarios was calculated using Kappa statistic. Agreement for concordant (two) vs. discordant (seven) scenarios were split at the median and analyzed using the Wilcoxon signed rank sum test. RESULTS: Overall the agreement between respondents for the clinical scenarios was not acceptable (Kappa=0.28). For the two scenarios where CMa and CCMta guidelines were concordant, specialists had high levels of agreement with recommendations (89% each). A majority of specialists disagreed with CMa recommendations in three of seven discordant scenarios. The lack of consistency in respondents' agreement attained statistical significance (p<0.001). CONCLUSIONS: Canadian epileptologists have variable counseling practices about driving, and this may be attributable to inconsistencies between CMa and CCMta medical fitness guidelines. This study highlights the need to harmonize driving recommendations in order to prevent physician and patient confusion about driving fitness in Canada.


Assuntos
Atitude do Pessoal de Saúde , Condução de Veículo/normas , Epilepsia/terapia , Educação de Pacientes como Assunto/normas , Médicos/normas , Guias de Prática Clínica como Assunto/normas , Canadá/epidemiologia , Epilepsia/diagnóstico , Epilepsia/epidemiologia , Humanos , Educação de Pacientes como Assunto/métodos , Relações Médico-Paciente , Inquéritos e Questionários
16.
Epilepsia ; 55(5): 674-682, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24650167

RESUMO

OBJECTIVE: Brain imaging studies have shown widespread structural abnormalities in patients with temporal lobe epilepsy (TLE) within and beyond the affected temporal lobe, suggesting an altered network. Graph theoretical analysis based on white matter tractography has provided a new perspective to evaluate the connectivity of the brain. The alterations in the topologic properties of a whole brain white matter network in patients with TLE remain unknown. The purpose of this study was to examine the white matter network in a cohort of patients with left TLE and mesial temporal sclerosis (mTLE) compared to healthy controls. METHODS: Anatomic brain networks of 16 patients with left mTLE were compared to those of 21 healthy controls. A white matter structural network was constructed from diffusion tensor tractography for each participant, and network parameters were compared between the patient and control groups. RESULTS: Patients with left mTLE exhibited concurrent decreases of global and local efficiencies and widespread reduction of regional efficiency in ipsilateral temporal, bilateral frontal, and bilateral parietal areas. Communication hubs, such as the left precuneus, were also altered in patients with mTLE compared to controls. SIGNIFICANCE: Our results demonstrate white matter network disruption in patients with left mTLE, supporting the notion that mTLE is a systemic brain disorder.


Assuntos
Encéfalo/patologia , Imagem de Difusão por Ressonância Magnética , Dominância Cerebral/fisiologia , Epilepsia do Lobo Temporal/patologia , Interpretação de Imagem Assistida por Computador , Leucoencefalopatias/patologia , Rede Nervosa/patologia , Lobo Temporal/patologia , Adulto , Encéfalo/fisiopatologia , Córtex Cerebral/patologia , Córtex Cerebral/fisiopatologia , Epilepsia do Lobo Temporal/diagnóstico , Epilepsia do Lobo Temporal/fisiopatologia , Feminino , Hipocampo/patologia , Hipocampo/fisiopatologia , Humanos , Aumento da Imagem , Leucoencefalopatias/diagnóstico , Leucoencefalopatias/fisiopatologia , Masculino , Pessoa de Meia-Idade , Rede Nervosa/fisiopatologia , Testes Neuropsicológicos , Esclerose , Lobo Temporal/fisiopatologia , Adulto Jovem
17.
Epileptic Disord ; 16(1): 107-11, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24556427

RESUMO

Epilepsia partialis continua is typically associated with lesions of the cerebral cortex. However, subcortical lesions can also cause this condition. We present a patient with epilepsia partialis continua who failed to respond to conventional anticonvulsant medications but experienced a dramatic transient response to alcohol and a subsequent response to primidone. This pattern of sensitivity, which is similar to that seen in essential tremor, has led to the hypothesis that the two disorders are associated with pathology within the same anatomical network. A new pathophysiological model is thus proposed for the occurrence of epilepsia partialis continua in both cortical and subcortical disease processes.


Assuntos
Álcoois/efeitos adversos , Córtex Cerebral/patologia , Epilepsia Parcial Contínua/fisiopatologia , Mioclonia/fisiopatologia , Adulto , Anticonvulsivantes/uso terapêutico , Eletroencefalografia/métodos , Epilepsia Parcial Contínua/tratamento farmacológico , Epilepsia Parcial Contínua/etiologia , Humanos , Masculino , Mioclonia/tratamento farmacológico , Mioclonia/etiologia , Gravação em Vídeo/métodos
18.
J Neuroinflammation ; 10: 152, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24330827

RESUMO

BACKGROUND: Rasmussen's encephalitis (RE) is an inflammatory encephalopathy of unknown cause defined by seizures with progressive neurological disabilities. Herein, the pathogenesis of RE was investigated focusing on inflammasome activation in the brain. METHODS: Patients with RE at the University of Alberta, Edmonton, AB, Canada, were identified and analyzed by neuroimaging, neuropsychological, molecular, and pathological tools. Primary human microglia, astrocytes, and neurons were examined using RT-PCR, enzyme-linked immunosorbent assay (ELISA), and western blotting. RESULTS: Four patients with RE were identified at the University of Alberta. Magnetic resonance imaging (MRI) disclosed increased signal intensities in cerebral white matter adjacent to cortical lesions of RE patients, accompanied by a decline in neurocognitive processing speed (P <0.05). CD3ϵ, HLA-DRA, and TNFα together with several inflammasome-associated genes (IL-1ß, IL-18, NLRP1, NLRP3, and CASP1) showed increased transcript levels in RE brains compared to non-RE controls (n = 6; P <0.05). Cultured human microglia displayed expression of inflammasome-associated genes and responded to inflammasome activators by releasing IL-1ß, which was inhibited by the caspase inhibitor, zVAD-fmk. Major histocompatibility complex (MHC) class II, IL-1ß, caspase-1, and alanine/serine/cysteine (ASC) immunoreactivity were increased in RE brain tissues, especially in white matter myeloid cells, in conjunction with mononuclear cell infiltration and gliosis. Neuroinflammation in RE brains was present in both white matter and adjacent cortex with associated induction of inflammasome components, which was correlated with neuroimaging and neuropsychological deficits. CONCLUSION: Inflammasome activation likely contributes to the disease process underlying RE and offers a mechanistic target for future therapeutic interventions.


Assuntos
Encéfalo/imunologia , Encéfalo/fisiopatologia , Encefalite/imunologia , Encefalite/fisiopatologia , Inflamassomos/fisiologia , Adolescente , Western Blotting , Criança , Pré-Escolar , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Masculino , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
19.
Front Hum Neurosci ; 7: 716, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24198774

RESUMO

Understanding the development of human brain organization is critical for gaining insight into how the enhancement of cognitive processes is related to the fine-tuning of the brain network. However, the developmental trajectory of the large-scale white matter (WM) network is not fully understood. Here, using graph theory, we examine developmental changes in the organization of WM networks in 180 typically-developing participants. WM networks were constructed using whole brain tractography and 78 cortical regions of interest were extracted from each participant. The subjects were first divided into 5 equal sample size (n = 36) groups (early childhood: 6.0-9.7 years; late childhood: 9.8-12.7 years; adolescence: 12.9-17.5 years; young adult: 17.6-21.8 years; adult: 21.9-29.6 years). Most prominent changes in the topological properties of developing brain networks occur at late childhood and adolescence. During late childhood period, the structural brain network showed significant increase in the global efficiency but decrease in modularity, suggesting a shift of topological organization toward a more randomized configuration. However, while preserving most topological features, there was a significant increase in the local efficiency at adolescence, suggesting the dynamic process of rewiring and rebalancing brain connections at different growth stages. In addition, several pivotal hubs were identified that are vital for the global coordination of information flow over the whole brain network across all age groups. Significant increases of nodal efficiency were present in several regions such as precuneus at late childhood. Finally, a stable and functionally/anatomically related modular organization was identified throughout the development of the WM network. This study used network analysis to elucidate the topological changes in brain maturation, paving the way for developing novel methods for analyzing disrupted brain connectivity in neurodevelopmental disorders.

20.
Neuroimage ; 74: 128-39, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23396161

RESUMO

Numerous animal studies have shown the applicability of diffusion tensor imaging (DTI) to track Wallerian degeneration that occurs after injury to the neural fiber. Non-invasive biomarkers that may differentiate the early axonal breakdown and later myelin degradation have been attributed to either reduced parallel and elevated perpendicular diffusivity, respectively. While several human DTI studies have shown this potential at subacute and chronic time points, the diffusion changes that occur within the first week are unknown. Anterior temporal lobectomy (i.e. resection of hippocampus) is the standard surgical treatment of medically refractory temporal lobe epilepsy. The concomitant transection of the fimbria-fornix serves as a unique opportunity to examine the process of Wallerian degeneration since the timing is known. Six temporal lobe epilepsy patients underwent brain DTI before the surgery, three to four times within the first week post-operatively, and at one to four months following surgery. Both parallel and perpendicular diffusivities decreased markedly by a similar amount in the ipsilateral fornix within the first two days post-surgery. Approaching the end of the first week, perpendicular (but not parallel) diffusivity pseudo-recovered towards its pre-surgical value, but then increased dramatically months later. Fractional anisotropy, as a result of the combined action of the parallel and perpendicular diffusivities, stayed relatively stable within the first week and only reduced drastically at the chronic stage. DTI demonstrated acute water diffusion changes within days of transection that are not just limited to parallel diffusivity. While the chronic diffusion changes in the fornix are compatible with myelin degradation, the acute changes may reflect beading and swelling of axolemma, granular disintegration of the axonal neurofilaments, ischemia induced cytotoxic edema, and/or changes in the extra-axonal space including inflammatory changes and gliosis.


Assuntos
Epilepsia do Lobo Temporal/cirurgia , Fórnice/patologia , Degeneração Walleriana/patologia , Adulto , Anisotropia , Lobectomia Temporal Anterior , Imagem de Difusão por Ressonância Magnética , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...