Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
1.
Clin Sci (Lond) ; 133(8): 939-951, 2019 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-30979784

RESUMO

Epoxyeicosatrienoic acids (EETs) and their synthetic analogs have cardiovascular protective effects. Here, we investigated the action of a novel EET analog EET-B on the progression of post-myocardial infarction (MI) heart failure in spontaneously hypertensive rats (SHR). Adult male SHR were divided into vehicle- and EET-B (10 mg/kg/day; p.o., 9 weeks)-treated groups. After 2 weeks of treatment, rats were subjected to 30-min left coronary artery occlusion or sham operation. Systolic blood pressure (SBP) and echocardiography (ECHO) measurements were performed at the beginning of study, 4 days before, and 7 weeks after MI. At the end of the study, tissue samples were collected for histological and biochemical analyses. We demonstrated that EET-B treatment did not affect blood pressure and cardiac parameters in SHR prior to MI. Fractional shortening (FS) was decreased to 18.4 ± 1.0% in vehicle-treated MI rats compared with corresponding sham (30.6 ± 1.0%) 7 weeks following MI induction. In infarcted SHR hearts, EET-B treatment improved FS (23.7 ± 0.7%), markedly increased heme oxygenase-1 (HO-1) immunopositivity in cardiomyocytes and reduced cardiac inflammation and fibrosis (by 13 and 19%, respectively). In conclusion, these findings suggest that EET analog EET-B has beneficial therapeutic actions to reduce cardiac remodeling in SHR subjected to MI.


Assuntos
Ácidos Araquidônicos/administração & dosagem , Infarto do Miocárdio/tratamento farmacológico , Animais , Ácidos Araquidônicos/química , Pressão Sanguínea , Modelos Animais de Doenças , Coração/fisiopatologia , Heme Oxigenase-1/genética , Heme Oxigenase-1/metabolismo , Humanos , Masculino , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/fisiopatologia , Ratos , Ratos Endogâmicos SHR
2.
Am J Physiol Heart Circ Physiol ; 315(5): H1148-H1158, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30074840

RESUMO

Epoxyeicosatrienoic acids (EETs) decrease cardiac ischemia-reperfusion injury; however, the mechanism of their protective effect remains elusive. Here, we investigated the cardioprotective action of a novel EET analog, EET-B, in reperfusion and the role of hypoxia-inducible factor (HIF)-1α in such action of EET-B. Adult male rats were subjected to 30 min of left coronary artery occlusion followed by 2 h of reperfusion. Administration of 14,15-EET (2.5 mg/kg) or EET-B (2.5 mg/kg) 5 min before reperfusion reduced infarct size expressed as a percentage of the area at risk from 64.3 ± 1.3% in control to 42.6 ± 1.9% and 46.0 ± 1.6%, respectively, and their coadministration did not provide any stronger effect. The 14,15-EET antagonist 14,15-epoxyeicosa-5( Z)-enoic acid (2.5 mg/kg) inhibited the infarct size-limiting effect of EET-B (62.5 ± 1.1%). Similarly, the HIF-1α inhibitors 2-methoxyestradiol (2.5 mg/kg) and acriflavine (2 mg/kg) completely abolished the cardioprotective effect of EET-B. In a separate set of experiments, the immunoreactivity of HIF-1α and its degrading enzyme prolyl hydroxylase domain protein 3 (PHD3) were analyzed in the ischemic areas and nonischemic septa. At the end of ischemia, the HIF-1α immunogenic signal markedly increased in the ischemic area compared with the septum (10.31 ± 0.78% vs. 0.34 ± 0.08%). After 20 min and 2 h of reperfusion, HIF-1α immunoreactivity decreased to 2.40 ± 0.48% and 1.85 ± 0.43%, respectively, in the controls. EET-B blunted the decrease of HIF-1α immunoreactivity (7.80 ± 0.69% and 6.44 ± 1.37%, respectively) and significantly reduced PHD3 immunogenic signal in ischemic tissue after reperfusion. In conclusion, EET-B provides an infarct size-limiting effect at reperfusion that is mediated by HIF-1α and downregulation of its degrading enzyme PHD3. NEW & NOTEWORTHY The present study shows that EET-B is an effective agonistic 14,15-epoxyeicosatrienoic acid analog, and its administration before reperfusion markedly reduced myocardial infarction in rats. Most importantly, we demonstrate that increased hypoxia-inducible factor-1α levels play a role in cardioprotection mediated by EET-B in reperfusion likely by mechanisms including downregulation of the hypoxia-inducible factor -1α-degrading enzyme prolyl hydroxylase domain protein 3.


Assuntos
Ácido 8,11,14-Eicosatrienoico/farmacologia , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Prolina Dioxigenases do Fator Induzível por Hipóxia/metabolismo , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/uso terapêutico , Animais , Modelos Animais de Doenças , Regulação para Baixo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Prolina Dioxigenases do Fator Induzível por Hipóxia/genética , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Proteólise , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos
3.
Br J Pharmacol ; 174(24): 4826-4835, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28982207

RESUMO

BACKGROUND AND PURPOSE: In light of the opioid epidemic, physicians are increasingly prescribing non-opioid analgesics to surgical patients. Transient receptor potential vanilloid 1 (TRPV1) inhibitors are potentially alternative pain therapeutics for surgery. Here, we examined in rodents whether the cardioprotection conferred by two common procedures during surgery, a laparotomy or morphine delivery, is mediated by the TRPV1 channel. We further tested whether an experimental analgesic peptide (known as P5) targeted against the TRPV1 C-terminus region interferes with laparotomy- or morphine-induced cardioprotection. EXPERIMENTAL APPROACH: Male Sprague-Dawley rats were subjected to 30 min coronary occlusion followed by 120 min reperfusion. Before ischaemia, a laparotomy with or without capsaicin application (0.1% cream, a TRPV1 activator) was performed. Additional rats were given morphine (0.3 mg·kg-1 ) with or without capsaicin. In addition, capsazepine (3 mg·kg-1 , a classical TRPV1 inhibitor), or P5 (3 mg·kg-1 , a peptide analgesic and TRPV1 inhibitor), was given either alone or prior to a laparotomy or morphine administration. Myocardial infarct size was determined. KEY RESULTS: A laparotomy, in addition to combining a laparotomy with capsaicin cream, reduced infarct size versus control. Morphine, in addition to combining morphine administration with capsaicin cream, also reduced infarct size versus control. When TRPV1 inhibitors capsazepine or P5 were given, either TRPV1 inhibitor abolished the infarct size reduction mediated by a laparotomy or morphine. CONCLUSIONS AND IMPLICATIONS: Inhibiting the TRPV1 channel blocks laparotomy- or morphine-induced cardioprotection. Impaired organ protection may be a potential pitfall of using TRPV1 inhibitors for pain control.


Assuntos
Analgésicos Opioides/farmacologia , Capsaicina/análogos & derivados , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/cirurgia , Piridinas/farmacologia , Canais de Cátion TRPV/antagonistas & inibidores , Animais , Capsaicina/química , Capsaicina/farmacologia , Masculino , Infarto do Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
4.
Cardiovasc Res ; 113(13): 1585-1602, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-29016740

RESUMO

AIMS: Fibroblast growth factor 1 (FGF1), a heparin/heparan sulfate-binding growth factor, is a potent cardioprotective agent against myocardial infarction (MI). The impact of heparin, the standard of care for MI patients entering the emergency room, on cardioprotective effects of FGF1 is unknown, however. METHODS AND RESULTS: To address this, a rat model of MI was employed to compare cardioprotective potentials (lower infarct size and improve post-ischemic function) of native FGF1 and an engineered FGF1 (FGF1ΔHBS) with reduced heparin-binding affinity when given at the onset of reperfusion in the absence or presence of heparin. FGF1 and FGF1ΔHBS did not alter heparin's anticoagulant properties. Treatment with heparin alone or native FGF1 significantly reduced infarct size compared to saline (P < 0.05). Surprisingly, treatment with FGF1ΔHBS markedly lowered infarct size compared to FGF1 (P < 0.05). Both native and modified FGF1 restored contractile and relaxation function (P < 0.05 versus saline or heparin). Furthermore, FGF1ΔHBS had greater improvement in cardiac function compared to FGF1 (P < 0.05). Heparin negatively impacted the cardioprotective effects (infarct size, post-ischemic recovery of function) of FGF1 (P < 0.05) but not of FGF1ΔHBS. Heparin also reduced the biodistribution of FGF1, but not FGF1ΔHBS, to the left ventricle. FGF1 and FGF1ΔHBS bound and triggered FGFR1-induced downstream activation of ERK1/2 (P < 0.05); yet, heparin co-treatment decreased FGF1-produced ERK1/2 activation, but not that activated by FGF1ΔHBS. CONCLUSION: These findings demonstrate that modification of the heparin-binding region of FGF1 significantly improves the cardioprotective efficacy, even in the presence of heparin, identifying a novel FGF ligand available for therapeutic use in ischemic heart disease.


Assuntos
Fármacos Cardiovasculares/farmacologia , Fator 1 de Crescimento de Fibroblastos/farmacologia , Heparina/farmacologia , Infarto do Miocárdio/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/metabolismo , Animais , Fármacos Cardiovasculares/metabolismo , Fármacos Cardiovasculares/farmacocinética , Modelos Animais de Doenças , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator 1 de Crescimento de Fibroblastos/genética , Fator 1 de Crescimento de Fibroblastos/metabolismo , Fator 1 de Crescimento de Fibroblastos/farmacocinética , Heparina/metabolismo , Humanos , Ligantes , Masculino , Mutação , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , Ligação Proteica , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Recuperação de Função Fisiológica , Distribuição Tecidual , Função Ventricular Esquerda/efeitos dos fármacos
5.
J Am Heart Assoc ; 5(9)2016 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-27671317

RESUMO

BACKGROUND: The transient receptor potential vanilloid 1 (TRPV1) mediates cellular responses to pain, heat, or noxious stimuli by calcium influx; however, the cellular localization and function of TRPV1 in the cardiomyocyte is largely unknown. We studied whether myocardial injury is regulated by TRPV1 and whether we could mitigate reperfusion injury by limiting the calcineurin interaction with TRPV1. METHODS AND RESULTS: In primary cardiomyocytes, confocal and electron microscopy demonstrates that TRPV1 is localized to the mitochondria. Capsaicin, the specific TRPV1 agonist, dose-dependently reduced mitochondrial membrane potential and was blocked by the TRPV1 antagonist capsazepine or the calcineurin inhibitor cyclosporine. Using in silico analysis, we discovered an interaction site for TRPV1 with calcineurin. We synthesized a peptide, V1-cal, to inhibit the interaction between TRPV1 and calcineurin. In an in vivo rat myocardial infarction model, V1-cal given just prior to reperfusion substantially mitigated myocardial infarct size compared with vehicle, capsaicin, or cyclosporine (24±3% versus 61±2%, 45±1%, and 49±2%, respectively; n=6 per group; P<0.01 versus all groups). Infarct size reduction by V1-cal was also not seen in TRPV1 knockout rats. CONCLUSIONS: TRPV1 is localized at the mitochondria in cardiomyocytes and regulates mitochondrial membrane potential through an interaction with calcineurin. We developed a novel therapeutic, V1-cal, that substantially reduces reperfusion injury by inhibiting the interaction of calcineurin with TRPV1. These data suggest that TRPV1 is an end-effector of cardioprotection and that modulating the TRPV1 protein interaction with calcineurin limits reperfusion injury.

6.
PLoS One ; 11(8): e0160840, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27505423

RESUMO

Intestinal microbiota determine severity of myocardial infarction in rats. We determined whether low molecular weight metabolites derived from intestinal microbiota and transported to the systemic circulation are linked to severity of myocardial infarction. Plasma from rats treated for seven days with the non-absorbed antibiotic vancomycin or a mixture of streptomycin, neomycin, polymyxin B and bacitracin was analyzed using mass spectrometry-based metabolite profiling platforms. Antibiotic-induced changes in the abundance of individual groups of intestinal microbiota dramatically altered the host's metabolism. Hierarchical clustering of dissimilarities separated the levels of 284 identified metabolites from treated vs. untreated rats; 193 were altered by the antibiotic treatments with a tendency towards decreased metabolite levels. Catabolism of the aromatic amino acids phenylalanine, tryptophan and tyrosine was the most affected pathway comprising 33 affected metabolites. Both antibiotic treatments decreased the severity of an induced myocardial infarction in vivo by 27% and 29%, respectively. We then determined whether microbial metabolites of the amino acids phenylalanine, tryptophan and tyrosine were linked to decreased severity of myocardial infarction. Vancomycin-treated rats were administered amino acid metabolites prior to ischemia/reperfusion studies. Oral or intravenous pretreatment of rats with these amino acid metabolites abolished the decrease in infarct size conferred by vancomycin. Inhibition of JAK-2 (AG-490, 10 µM), Src kinase (PP1, 20 µM), Akt/PI3 kinase (Wortmannin, 100 nM), p44/42 MAPK (PD98059, 10 µM), p38 MAPK (SB203580, 10 µM), or KATP channels (glibenclamide, 3 µM) abolished cardioprotection by vancomycin, indicating microbial metabolites are interacting with cell surface receptors to transduce their signals through Src kinase, cell survival pathways and KATP channels. These inhibitors have no effect on myocardial infarct size in untreated rats. This study links gut microbiota metabolites to severity of myocardial infarction and may provide future opportunities for novel diagnostic tests and interventions for the prevention of cardiovascular disease.


Assuntos
Microbioma Gastrointestinal , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/microbiologia , Animais , Antibacterianos/farmacologia , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolômica , Fenótipo , Ratos , Vancomicina/farmacologia
7.
Biomed Res Int ; 2015: 129612, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26413502

RESUMO

Opioids reduce injury from myocardial ischemia-reperfusion in humans. In experimental models, this mechanism involves GSK3ß inhibition. HSP90 regulates mitochondrial protein import, with GSK3ß inhibition increasing HSP90 mitochondrial content. Therefore, we determined whether morphine-induced cardioprotection is mediated by HSP90 and if the protective effect is downstream of GSK3ß inhibition. Male Sprague-Dawley rats, aged 8-10 weeks, were subjected to an in vivo myocardial ischemia-reperfusion injury protocol involving 30 minutes of ischemia followed by 2 hours of reperfusion. Hemodynamics were continually monitored and myocardial infarct size determined. Rats received morphine (0.3 mg/kg), the GSK3ß inhibitor, SB216763 (0.6 mg/kg), or saline, 10 minutes prior to ischemia. Some rats received selective HSP90 inhibitors, radicicol (0.3 mg/kg), or deoxyspergualin (DSG, 0.6 mg/kg) alone or 5 minutes prior to morphine or SB216763. Morphine reduced myocardial infarct size when compared to control (42 ± 2% versus 60 ± 1%). This protection was abolished by prior treatment of radicicol or DSG (59 ± 1%, 56 ± 2%). GSK3ß inhibition also reduced myocardial infarct size (41 ± 2%) with HSP90 inhibition by radicicol or DSG partially inhibiting SB216763-induced infarct size reduction (54 ± 3%, 47 ± 1%, resp.). These data suggest that opioid-induced cardioprotection is mediated by HSP90. Part of this protection afforded by HSP90 is downstream of GSK3ß, potentially via the HSP-TOM mitochondrial import pathway.


Assuntos
Proteínas de Choque Térmico HSP90/metabolismo , Coração/efeitos dos fármacos , Morfina/farmacologia , Infarto do Miocárdio/metabolismo , Sequência de Aminoácidos , Animais , Quinase 3 da Glicogênio Sintase/metabolismo , Glicogênio Sintase Quinase 3 beta , Masculino , Dados de Sequência Molecular , Infarto do Miocárdio/patologia , Miocárdio/patologia , Ratos , Ratos Sprague-Dawley
8.
J Pharmacol Exp Ther ; 352(3): 429-37, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25512369

RESUMO

Thrombopoietin confers immediate protection against injury caused by ischemia/reperfusion in the rat heart. Eltrombopag is a small molecule agonist of the thrombopoietin receptor, the physiologic target of thrombopoietin. However, the ability of eltrombopag and thrombopoietin to protect human cardiac myocytes against injury and the mechanisms underlying myocyte protection are not known. Human cardiac myocytes (n = 6-10/group) were treated with eltrombopag (0.1-30.0 µM) or thrombopoietin (0.1-30.0 ng/ml) and then subjected to 5 hours of hypoxia (95% N2/5% CO2) and 16 hours of reoxygenation to determine their ability to confer resistance to myocardial injury. The thrombopoietin receptor c-Mpl was detected in unstimulated human cardiac myocytes by Western blotting. Eltrombopag and thrombopoietin confer immediate protection to human cardiac myocytes against injury from hypoxia/reoxygenation by decreasing necrotic and apoptotic cell death in a concentration-dependent manner, with an optimal concentration of 3 µM for eltrombopag and 1.0 ng/ml for thrombopoietin. The extent of protection conferred with eltrombopag is equivalent to that of thrombopoietin. Eltrombopag and thrombopoietin activate multiple prosurvival pathways; inhibition of Janus kinase-2, proto-oncogene tyrosine-protein kinase, protein kinase B/phosphatidylinositol-3 kinase, p44/42 mitogen-activated protein kinase (MAPK), and p38 MAPK abolished cardiac myocyte protection by eltrombopag and thrombopoietin. Eltrombopag and thrombopoietin may represent important and potent agents for immediately and substantially increasing protection of human cardiac myocytes, and may offer a long-lasting benefit through activation of prosurvival pathways during ischemia.


Assuntos
Benzoatos/farmacologia , Cardiotônicos/farmacologia , Hidrazinas/farmacologia , Miócitos Cardíacos/fisiologia , Pirazóis/farmacologia , Receptores de Trombopoetina/agonistas , Receptores de Trombopoetina/fisiologia , Transdução de Sinais/fisiologia , Hipóxia Celular/efeitos dos fármacos , Hipóxia Celular/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Células Cultivadas , Relação Dose-Resposta a Droga , Humanos , Miócitos Cardíacos/efeitos dos fármacos , Proto-Oncogene Mas , Transdução de Sinais/efeitos dos fármacos , Trombopoetina/farmacologia
9.
Basic Res Cardiol ; 108(5): 381, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23982492

RESUMO

Deciphering the remote conditioning molecular mechanism may provide targets to develop therapeutics that can broaden the clinical application. To further investigate this, we tested whether two protein kinase C (PKC) isozymes, the ubiquitously expressed epsilon PKC (εPKC) and the neuronal-specific gamma PKC (γPKC), mediate nociceptive-induced remote myocardial conditioning. Male Sprague-Dawley rats were used for both in vivo and ex vivo myocardial ischemia-reperfusion protocols. For the in vivo studies, using a surgical abdominal incision for comparison, applying only to the abdomen either bradykinin or the εPKC activator (ψεRACK) reduced myocardial infarct size (45 ± 1, 44 ± 2 %, respectively, vs. incision: 43 ± 2 %, and control: 63 ± 2 %, P < 0.001). Western blot showed only εPKC, and not γPKC, is highly expressed in the myocardium. However, applying a selective γPKC inhibitor (γV5-3) to the abdominal skin blocked remote protection by any of these strategies. Using an ex vivo isolated heart model without an intact nervous system, only selective εPKC activation, unlike a selective classical PKC isozyme activator (activating α, ß, ßII, and γ), reduced myocardial injury. Importantly, the classical PKC isozyme activator given to the abdomen in vivo (with an intact nervous system including γPKC) during myocardial ischemia reduced infarct size as effectively as an abdominal incision or ψεRACK (45 ± 1 vs. 45 ± 2 and 47 ± 1 %, respectively). The classical PKC activator-induced protection was also blocked by spinal cord surgical transection. These findings identified potential remote conditioning mimetics, with these strategies effective even during myocardial ischemia. A novel mechanism of nociceptive-induced remote conditioning, involving γPKC, was also identified.


Assuntos
Precondicionamento Isquêmico Miocárdico/métodos , Traumatismo por Reperfusão Miocárdica/metabolismo , Dor/fisiopatologia , Proteína Quinase C/metabolismo , Animais , Western Blotting , Modelos Animais de Doenças , Masculino , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Ratos , Ratos Sprague-Dawley
10.
J Mol Cell Cardiol ; 59: 20-9, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23419451

RESUMO

We previously demonstrated that 11,12 and 14,15-epoxeicosatrienoic acids (EETs) produce cardioprotection against ischemia-reperfusion injury in dogs and rats. Several signaling mechanisms have been implicated in the cardioprotective actions of the EETs; however, their mechanisms remain largely elusive. Since nitric oxide (NO) plays a significant role in cardioprotection and EETs have been demonstrated to induce NO production in various tissues, we hypothesized that NO is involved in mediating the EET actions in cardioprotection. To test this hypothesis, we used an in vivo rat model of infarction in which intact rat hearts were subjected to 30-min occlusion of the left coronary artery and 2-hr reperfusion. 11,12-EET or 14,15-EET (2.5mg/kg) administered 10min prior to the occlusion reduced infarct size, expressed as a percentage of the AAR (IS/AAR), from 63.9±0.8% (control) to 45.3±1.2% and 45.5±1.7%, respectively. A nonselective nitric oxide synthase (NOS) inhibitor, L-NAME (1.0mg/kg) or a selective endothelial NOS inhibitor, L-NIO (0.30mg/kg) alone did not affect IS/AAR but they completely abolished the cardioprotective effects of the EETs. On the other hand, a selective neuronal NOS inhibitor, nNOS I (0.03mg/kg) and a selective inducible NOS inhibitor, 1400W (0.10mg/kg) did not affect IS/AAR or block the cardioprotective effects of the EETs. Administration of 11,12-EET (2.5mg/kg) to the rats also transiently increased the plasma NO concentration. 14,15-EET (10µM) induced the phosphorylation of eNOS (Ser(1177)) as well as a transient increase of NO production in rat cardiomyoblast cell line (H9c2 cells). When 11,12-EET or 14,15-EET was administered at 5min prior to reperfusion, infarct size was also reduced to 42.8±2.2% and 42.6±1.9%, respectively. Interestingly, L-NAME (1.0mg/kg) and a mitochondrial KATP channel blocker, 5-HD (10mg/kg) did not abolish while a sarcolemmal KATP channel blocker, HMR 1098 (6.0mg/kg) and a mitochondrial permeability transition pore (MPTP) opener, atractyloside (5.0mg/kg) completely abolished the cardioprotection produced by the EETs. 14,15-EET (1.5mg/kg) with an inhibitor of MPTP opening, cyclosporin A (CsA, 1.0mg/kg) produced a greater reduction of infarct size than their individual administration. Conversely, an EET antagonist 14,15-epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 2.5mg/kg) completely abolished the cardioprotective effects of CsA, suggesting a role of MPTP in mediating the EET actions. Taken together, these results suggest that the cardioprotective effects of the EETs in an acute ischemia-reperfusion model are mediated by distinct mediators depending on the time of EET administration. The cardioprotective effects of EETs administered prior to ischemia were regulated by the activation of eNOS and increased NO production, while sarcKATP channels and MPTP were involved in the beneficial effects of the EETs when administered just prior to reperfusion.


Assuntos
Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Coração/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Ácido 8,11,14-Eicosatrienoico/antagonistas & inibidores , Ácido 8,11,14-Eicosatrienoico/farmacologia , Ácido 8,11,14-Eicosatrienoico/uso terapêutico , Animais , Linhagem Celular , Hemodinâmica/fisiologia , Iminas/farmacologia , Masculino , Poro de Transição de Permeabilidade Mitocondrial , Infarto do Miocárdio/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Traumatismo por Reperfusão/tratamento farmacológico , Traumatismo por Reperfusão/enzimologia , Traumatismo por Reperfusão/metabolismo
11.
J Cardiovasc Pharmacol Ther ; 18(1): 38-45, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22407888

RESUMO

The present study further identified factors involved in the cardioprotective phenomenon of remote preconditioning of trauma (RPCT) with special emphasis on the role of the epoxyeicosatrienoic acids (EETs) in mediating this phenomenon. Remote preconditioning of trauma was produced by an abdominal incision only through the skin. Subsequently, all rats were subjected to 30 minutes of left coronary artery occlusion followed by 2 hours of reperfusion and the infarct size was determined. Remote preconditioning of trauma produced a reduction in infarct size expressed as a percentage of the area at risk from 63.0% ± 1.1% to 44.7% ± 1.4%; P < .01 versus control. To test the 3 major triggers of classical preconditioning in mediating RPCT, blockers of the bradykinin B2 receptor (B2BK), (S)-4-[2-[Bis(cyclohexylamino)methyleneamino]-3-(2-naphthalenyl)-1-oxopropylamino]benzyl tributyl phosphonium (WIN 64338, 1 mg/kg, iv), or HOE 140 (50 µg/kg, iv), the nonselective opioid receptor blocker, naloxone (3 mg/kg, iv), or the adenosine A1 receptor blocker, 8-Cyclopentyl-1,3-dipropylxanthine (DPCPX, 1 mg/kg, iv) were administered 10 minutes prior to RPCT. Only the 2 B2BK selective antagonists blocked RPCT (60.2% ± 1.1%, WIN 64338; 62.3% ± 2.0%, HOE 140). To test EETs in RPCT, we administered the EET receptor antagonist 14,15-Epoxyeicosa-5(Z)-enoic acid (14,15-EEZE, 2.5 mg/kg, iv) or the EET synthesis inhibitor, N-(Methylsulfonyl)-2-(2-propynyloxy)-benzenehexanamide (MSPPOH, 3.0 mg/kg, iv) 10 minutes prior to RPCT. In both groups, the EET antagonists completely blocked RPCT (62.0% ± 0.8%, 14,15-EEZE; 61.8% ± 1.0%, MSPPOH). The EET antagonists also blocked the effect of B2BK activation. We also determined whether the sarcolemmal K(ATP) or the mitochondrial K(ATP) channel mediate RPCT by pretreating rats with 1-[5-[2-(5-Chloro-o-anisamido)ethyl]-2-methoxyphenyl]sulfonyl-3 methylthiourea, sodium salt (HMR 1098) or 5-hydroxydecanoic acid (5-HD), respectively. Interestingly, 5-HD blocked RPCT (64.7% ± 1.3%), whereas, HMR 1098 did not (50.3% ± 1.3%). The 2 EET antagonists completely blocked capsaicin-induced cardioprotection. These results clearly suggest that EETs mediate RPCT-, bradykinin- and capsaicin-induced cardioprotection in rat hearts.


Assuntos
Sistema Enzimático do Citocromo P-450/fisiologia , Precondicionamento Isquêmico Miocárdico , Infarto do Miocárdio/tratamento farmacológico , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Capsaicina/farmacologia , Hemodinâmica , Canais KATP/fisiologia , Masculino , Ratos , Ratos Sprague-Dawley , Sarcolema/fisiologia , Xantinas/farmacologia
12.
Pharmacology ; 90(1-2): 110-6, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22814415

RESUMO

BACKGROUND/AIMS: Eribis peptide 94 (EP 94) is a new enkephalin derivative which potently binds to the µ- and δ-opioid receptor. In this study, we determined the effects of EP 94 and potential mechanism(s) involved in cardioprotection of the rat heart. METHODS AND RESULTS: An acute (5 and10 min into ischemia) and a chronic (24 h prior to ischemia) EP 94 administration produced a similar 30-40% reduction in infarct size/area at risk and the effects were blocked by the K(ATP) channel antagonists, HMR 1098 and 5-HD. The cardioprotective effects were blocked by a nonselective nitric oxide synthase (NOS) inhibitor (L-NAME) following acute administration and by a selective iNOS inhibitor (1400W) following chronic administration. CONCLUSION: These results suggest that EP 94 may have potential for the treatment of ischemic heart disease via a nitric oxide (NO)-K(ATP)-mediated mechanism.


Assuntos
Cardiotônicos/uso terapêutico , Encefalinas/uso terapêutico , Canais KATP/fisiologia , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Óxido Nítrico Sintase/fisiologia , Animais , Benzamidas/farmacologia , Cardiotônicos/farmacologia , Ácidos Decanoicos/farmacologia , Encefalinas/farmacologia , Hidroxiácidos/farmacologia , Canais KATP/antagonistas & inibidores , Masculino , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase/antagonistas & inibidores , Óxido Nítrico Sintase Tipo II/fisiologia , Bloqueadores dos Canais de Potássio/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Opioides delta/agonistas , Receptores Opioides mu/agonistas
13.
FASEB J ; 26(4): 1727-35, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22247331

RESUMO

Signals from the intestinal microbiota are important for normal host physiology; alteration of the microbiota (dysbiosis) is associated with multiple disease states. We determined the effect of antibiotic-induced intestinal dysbiosis on circulating cytokine levels and severity of ischemia/reperfusion injury in the heart. Treatment of Dahl S rats with a minimally absorbed antibiotic vancomycin, in the drinking water, decreased circulating leptin levels by 38%, resulted in smaller myocardial infarcts (27% reduction), and improved recovery of postischemic mechanical function (35%) as compared with untreated controls. Vancomycin altered the abundance of intestinal bacteria and fungi, measured by 16S and 18S ribosomal DNA quantity. Pretreatment with leptin (0.12 µg/kg i.v.) 24 h before ischemia/reperfusion abolished cardioprotection produced by vancomycin treatment. Dahl S rats fed the commercially available probiotic product Goodbelly, which contains the leptin-suppressing bacteria Lactobacillus plantarum 299v, also resulted in decreased circulating leptin levels by 41%, smaller myocardial infarcts (29% reduction), and greater recovery of postischemic mechanical function (23%). Pretreatment with leptin (0.12 µg/kg i.v.) abolished cardioprotection produced by Goodbelly. This proof-of-concept study is the first to identify a mechanistic link between changes in intestinal microbiota and myocardial infarction and demonstrates that a probiotic supplement can reduce myocardial infarct size.


Assuntos
Intestinos/microbiologia , Metagenoma/efeitos dos fármacos , Infarto do Miocárdio/patologia , Infarto do Miocárdio/fisiopatologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Antibacterianos/farmacologia , Citocinas/sangue , Água Potável , Humanos , Intestinos/efeitos dos fármacos , Leptina/sangue , Leptina/farmacologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Probióticos/uso terapêutico , Ratos , Ratos Endogâmicos Dahl , Vancomicina/farmacologia
14.
J Pharmacol Exp Ther ; 340(1): 210-7, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22011434

RESUMO

Adenosine is increased in ischemic tissues where it serves a protective role by activating adenosine receptors (ARs), including the A3 AR subtype. We investigated the effect of N-{2-[(3,4-dichlorophenyl)amino]quinolin-4-yl}cyclohexanecarboxamide (LUF6096), a positive allosteric modulator of the A3 AR, on infarct size in a barbital-anesthetized dog model of myocardial ischemia/reperfusion injury. Dogs were subjected to 60 min of coronary artery occlusion and 3 h of reperfusion. Infarct size was assessed by macrohistochemical staining. Three experimental groups were included in the study. Groups I and II received two doses of vehicle or LUF6096 (0.5 mg/kg i.v. bolus), one administered before ischemia and the other immediately before reperfusion. Group III received a single dose of LUF6096 (1 mg/kg i.v. bolus) immediately before reperfusion. In preliminary in vitro studies, LUF6096 was found to exert potent enhancing activity (EC50 114.3 ± 15.9 nM) with the canine A3 AR in a guanosine 5'-[γ-[³5S]thio]triphosphate binding assay. LUF6096 increased the maximal efficacy of the partial A3 AR agonist 2-chloro-N6-(3-iodobenzyl)adenosine-5'-N-methylcarboxamide and the native agonist adenosine more than 2-fold while producing a slight decrease in potency. In the dog studies, administration of LUF6096 had no effect on any hemodynamic parameter measured. Pretreatment with LUF6096 before coronary occlusion and during reperfusion in group II dogs produced a marked reduction in infarct size (∼50% reduction) compared with group I vehicle-treated dogs. An equivalent reduction in infarct size was observed when LUF6096 was administered immediately before reperfusion in group III dogs. This is the first study to demonstrate efficacy of an A3 AR allosteric enhancer in an in vivo model of infarction.


Assuntos
Adenosina/análogos & derivados , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Receptor A3 de Adenosina/efeitos dos fármacos , Adenosina/farmacologia , Animais , Pressão Sanguínea/efeitos dos fármacos , Fármacos Cardiovasculares/farmacologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Cromatografia Líquida de Alta Pressão , Cães , Feminino , Guanosina 5'-O-(3-Tiotrifosfato)/metabolismo , Células HEK293 , Frequência Cardíaca/efeitos dos fármacos , Humanos , Masculino , Espectrometria de Massas , Ensaio Radioligante , Função Ventricular Esquerda/efeitos dos fármacos
15.
J Cardiovasc Pharmacol ; 59(2): 194-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22130105

RESUMO

Eribis peptide 94 (EP 94) is a novel enkephalin derivative that binds with high potency to µ and δ opioid receptors with less affinity for the κ opioid receptor. This compound has recently been shown to produce an acute reduction in myocardial infarct size in the anesthetized pig and rat partially via an endothelial nitric oxide synthase and KATP channel-dependent mechanism. EP 94 also was found to produce a chronic reduction in infarct size 24 hours postdrug administration via the upregulation of inducible nitric oxide synthase in rats. Despite these findings, no data have emerged in which the opioid receptor subtype responsible for cardioprotection has been identified and the site of action, heart, other peripheral organs, or the central nervous system, has not been addressed. In the current study, EP 94, was administered in 2 divided doses (0.5 µg/kg, intravenously) at 5 and 10 minutes into the ischemic period, and the opioid antagonists were administered 10 minutes before the onset of the 30-minute ischemic period. The selective antagonists used were the µ receptor antagonist CTOP (D-Phe-Cys-Tyr-D-Trp-Orn-Thr-Pen-Thr-NH2), the δ receptor antagonists naltrindole and BNTX (7-benzylidenenaltrexone), and the κ receptor antagonist nor-BNI (norbinaltorphimine). Surprisingly, only CTOP completely blocked the cardioprotective effect of EP 94, whereas naltrindole, BNTX, and nor-BNI had modest but nonsignificant effects. Because there is controversial evidence suggesting that µ receptors may be absent in the adult rat myocardium, it was hypothesized that the protective effect of EP 94 may be mediated by an action outside the heart, perhaps in the central nervous system. To test this hypothesis, rats were pretreated with the nonselective opioid antagonist, naloxone hydrochloride, which penetrates the blood-brain barrier or naloxone methiodide, the quaternary salt of naloxone hydrochloride, which does not penetrate the blood-brain barrier before EP 94 administration. In support of a central nervous system site of action for EP 94, naloxone hydrochloride completely blocked its cardioprotective effect, whereas naloxone methiodide had no effect. These results suggest that EP 94 reduces infarct size (expressed as a percent of the area at risk) in the rat primarily via activation of central µ opioid receptors.


Assuntos
Encefalinas/farmacologia , Infarto do Miocárdio/tratamento farmacológico , Antagonistas de Entorpecentes/farmacologia , Receptores Opioides mu/agonistas , Animais , Barreira Hematoencefálica/metabolismo , Cardiotônicos/administração & dosagem , Cardiotônicos/farmacologia , Encefalinas/administração & dosagem , Masculino , Infarto do Miocárdio/patologia , Antagonistas de Entorpecentes/administração & dosagem , Ratos , Ratos Sprague-Dawley , Receptores Opioides mu/antagonistas & inibidores , Receptores Opioides mu/metabolismo
16.
Eur J Pharmacol ; 674(2-3): 378-83, 2012 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-22119384

RESUMO

Opioids confer cardioprotection after myocardial ischaemia and reperfusion. The primary aim of the present study was to evaluate the cardioprotective effect of different doses of enkephalin analogue Eribis peptide 94 (EP 94) in a porcine model of ischaemia and reperfusion. A secondary aim was to analyse the impact of ischaemia and reperfusion on the expression of opioid receptor subtypes in the porcine heart. Thirty-four anesthetised pigs underwent 40 min of balloon occlusion of the left anterior descending coronary artery followed by four hours of reperfusion. Pigs were given either vehicle (0.9% NaCl) or one of four doses of EP 94 (0.2, 1, 5 or 25 ug/kg at each administration, respectively), intravenously after 26, 33 and 40 min of ischaemia. Hearts were stained to quantify area at risk and infarct size. mRNA and protein expressions of the opioid receptor subtypes were detected with RT-PCR, immunoblotting and immunohistochemistry in the control and ischaemic/reperfused areas. There was a significant dose-response relationship between higher doses of EP 94 and reduced infarct size. Expression of κ- and δ-opioid receptors was detected at both mRNA and protein levels. In ischaemic/reperfused areas, an increased expression of mRNA for both receptors was observed, whereas only protein expression for the δ subtype was up-regulated. The µ-opioid receptor was not detected.


Assuntos
Cardiotônicos/farmacologia , Encefalinas/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão Miocárdica/tratamento farmacológico , Miocárdio/metabolismo , Receptores Opioides/metabolismo , Animais , Arritmias Cardíacas/complicações , Arritmias Cardíacas/tratamento farmacológico , Cardiotônicos/sangue , Cardiotônicos/uso terapêutico , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Encefalinas/sangue , Encefalinas/uso terapêutico , Feminino , Hemodinâmica/efeitos dos fármacos , Infarto do Miocárdio/complicações , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/patologia , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/fisiopatologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/fisiopatologia , Miocárdio/patologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores Opioides/genética , Risco , Suínos
17.
Cardiovasc Drugs Ther ; 25(6): 517-22, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21786213

RESUMO

OBJECTIVE: Recently, a novel observation was made in which nonischemic trauma at a site remote from the heart produced by a transverse abdominal incision resulted in a marked reduction of infarct size (IS) in the mouse heart via activation of sensory nerve fibers in the skin and subsequent activation of bradykinin 2 receptors (BK2R). This phenomenon was termed remote preconditioning of trauma (RPCT). Since RPCT may have potential clinical implications we attempted to confirm these findings in a large animal model, the dog. The epoxyeicosatrienoic acids (EETs) have also recently been shown to be antinociceptive and have been shown to mimic ischemic preconditioning (IPC) and postconditioning (POC) in dogs, therefore, we tested the role of the EETs in RPCT. METHODS: Anesthetized adult mongrel dogs of either sex were subjected to 60 min of left anterior descending (LAD) coronary artery occlusion followed by 3 h of reperfusion. In all groups except the controls (no slit), a transverse slit (9 cm) was applied to the abdominal wall of the dog being careful to only slit the skin. Subsequently, 15 min after the slit the heart was subjected to the ischemia/reperfusion protocol. RESULTS: In the control dogs, the IS as a percent of the area at risk (AAR) was 22.5 ± 2.4%, whereas in the dogs subjected to the slit alone the IS/AAR was reduced to 9.2 ± 1.2% (*P < 0.01). The BR2R blocker, HOE 140 (50 ug/kg, iv) given 10 min prior to the slit, completely abolished the protective effects of RCPT as did pretreatment with 14,15-EEZE, a putative EET receptor blocker or pretreatment with the selective EET synthesis inhibitor, MSPPOH. CONCLUSIONS: These results suggest that BK and the EETs share cardioprotective properties in a large animal model of RPCT.


Assuntos
Abdome/cirurgia , Sistema Enzimático do Citocromo P-450/metabolismo , Precondicionamento Isquêmico Miocárdico/métodos , Infarto do Miocárdio/prevenção & controle , Miocárdio , Receptor B2 da Bradicinina/metabolismo , Ácido 8,11,14-Eicosatrienoico/análogos & derivados , Ácido 8,11,14-Eicosatrienoico/farmacologia , Animais , Bradicinina/análogos & derivados , Bradicinina/farmacologia , Antagonistas de Receptor B2 da Bradicinina , Circulação Coronária/efeitos dos fármacos , Inibidores das Enzimas do Citocromo P-450 , Modelos Animais de Doenças , Cães , Feminino , Hemodinâmica/efeitos dos fármacos , Pós-Condicionamento Isquêmico/métodos , Masculino , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/enzimologia , Miocárdio/metabolismo , Miocárdio/patologia
18.
Acta Pharmacol Sin ; 32(6): 824-33, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21642951

RESUMO

AIM: To further characterize the functional role of cystic fibrosis transmembrane conductance regulator (CFTR) in early and late (second window) ischemic preconditioning (IPC)- and postconditioning (POC)-mediated cardioprotection against ischemia/reperfusion (I/R) injury. METHODS: CFTR knockout (CFTR(-/-)) mice and age- and gender-matched wild-type (CFTR(+/+)) and heterozygous (CFTR(+/-)) mice were used. In in vivo studies, the animals were subjected to a 30-min coronary occlusion followed by a 40-min reperfusion. In ex vivo (isolate heart) studies, a 45-min global ischemia was applied. To evaluate apoptosis, the level of activated caspase 3 and TdT-mediated dUTP-X nick end labeling (TUNEL) were examined. RESULTS: In the in vivo I/R models, early IPC significantly reduced the myocardial infarct size in wild-type (CFTR(+/+)) (from 40.4% ± 5.3% to 10.4% ± 2.0%, n=8, P<0.001) and heterozygous (CFTR(+/-)) littermates (from 39.4% ± 2.4% to 15.4% ± 5.1%, n=6, P<0.001) but failed to protect CFTR knockout (CFTR(-/-)) mice from I/R induced myocardial infarction (46.9% ± 6.2% vs 55.5% ± 7.8%, n=6, P>0.5). Similar results were observed in the in vivo late IPC experiments. Furthermore, in both in vivo and ex vivo I/R models, POC significantly reduced myocardial infarction in wild-type mice, but not in CFTR knockout mice. In ex vivo I/R models, targeted inactivation of CFTR gene abolished the protective effects of IPC against I/R-induced apoptosis. CONCLUSION: These results provide compelling evidence for a critical role for CFTR Cl(-) channels in IPC- and POC-mediated cardioprotection against I/R-induced myocardial injury.


Assuntos
Regulador de Condutância Transmembrana em Fibrose Cística/fisiologia , Pós-Condicionamento Isquêmico , Precondicionamento Isquêmico Miocárdico , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Animais , Apoptose , Caspase 3/metabolismo , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Modelos Animais de Doenças , Masculino , Camundongos , Camundongos Endogâmicos CFTR , Camundongos Knockout , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Miocárdio/metabolismo , Miocárdio/patologia , Perfusão
19.
J Thromb Thrombolysis ; 31(4): 431-5, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21082215

RESUMO

BIIB 513 and EMD 85131 are selective inhibitors of the Na+/H+ exchanger-1 (NHE-1) that are benzoylguanidine derivatives of the clinically employed diuretic amiloride. Prior studies have suggested a role for NHE-1 activity in platelet activation and aggregation using amiloride or its non- benzoylguanidines derivatives. However, the concentrations employed in these prior studies were at levels known to exert effects on other ion transport systems besides the NHE-1. Therefore, the purpose of this study was to examine the effects of more selective NHE-1 inhibitors, BIIB 513 and EMD 85131, on platelet aggregation and in vivo cyclic flow following arterial injury. BIIB 513 and EMD 85131 effects on ex vivo canine and human platelet aggregation in response to various agents was monitored via platelet aggregation. For analysis of in vivo thrombus formation, a femoral artery crush injury model was employed and a flow meter was used to monitor the effect of BIIB 513 on cyclic blood flow. Treatment of either canine or human platelets with up to 1 mM of BIIB 513 had no effect on aggregation induced by platelet activating factor (PAF), thrombin receptor activator peptide (TRAP), or adenosine diphosphate (ADP). Additionally, the structurally related compound EMD 85131 at up to 1 mM failed to inhibit TRAP induced platelet aggregation. In vivo administration of up to 9 mg/kg of BIIB 513 intravenously failed to affect cyclic flow in a canine model of femoral artery injury. These data demonstrate that the specific and selective NHE-1 inhibitors BIIB 513 or EMD 85131 have no effect on ex vivo platelet aggregation or in vivo cyclic flow following arterial injury.


Assuntos
Benzamidas/farmacologia , Plaquetas/metabolismo , Artéria Femoral/lesões , Mesilatos/farmacologia , Agregação Plaquetária/efeitos dos fármacos , Pirróis/farmacologia , Trocadores de Sódio-Hidrogênio/antagonistas & inibidores , Animais , Velocidade do Fluxo Sanguíneo , Modelos Animais de Doenças , Cães , Artéria Femoral/metabolismo , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...