Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Ther Nucleic Acids ; 35(1): 102117, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38304729

RESUMO

Identifying therapeutic oligonucleotides that are cross-reactive to experimental animal species can dramatically accelerate the process of preclinical development and clinical translation. Here, we identify fully chemically-modified small interfering RNAs (siRNAs) that are cross-reactive to Janus kinase 1 (JAK1) in humans and a large variety of other species. We validated the identified siRNAs in silencing JAK1 in cell lines and skin tissues of multiple species. JAK1 is one of the four members of the JAK family of tyrosine kinases that mediate the signaling transduction of many inflammatory cytokine pathways. Dysregulation of these pathways is often involved in the pathogenesis of various immune disorders, and modulation of JAK family enzymes is an effective strategy in the clinic. Thus, this work may open up unprecedented opportunities for evaluating the modulation of JAK1 in many animal models of human inflammatory skin diseases. Further chemical engineering of the optimized JAK1 siRNAs may expand the utility of these compounds for treating immune disorders in additional tissues.

2.
Nat Commun ; 14(1): 7099, 2023 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-37925520

RESUMO

Inhibition of Janus kinase (JAK) family enzymes is a popular strategy for treating inflammatory and autoimmune skin diseases. In the clinic, small molecule JAK inhibitors show distinct efficacy and safety profiles, likely reflecting variable selectivity for JAK subtypes. Absolute JAK subtype selectivity has not yet been achieved. Here, we rationally design small interfering RNAs (siRNAs) that offer sequence-specific gene silencing of JAK1, narrowing the spectrum of action on JAK-dependent cytokine signaling to maintain efficacy and improve safety. Our fully chemically modified siRNA supports efficient silencing of JAK1 expression in human skin explant and modulation of JAK1-dependent inflammatory signaling. A single injection into mouse skin enables five weeks of duration of effect. In a mouse model of vitiligo, local administration of the JAK1 siRNA significantly reduces skin infiltration of autoreactive CD8+ T cells and prevents epidermal depigmentation. This work establishes a path toward siRNA treatments as a new class of therapeutic modality for inflammatory and autoimmune skin diseases.


Assuntos
Inibidores de Janus Quinases , Vitiligo , Camundongos , Animais , Humanos , RNA Interferente Pequeno/genética , Linfócitos T CD8-Positivos/metabolismo , Autoimunidade/genética , Vitiligo/tratamento farmacológico , Vitiligo/genética , Janus Quinase 1/genética , Janus Quinase 1/metabolismo , RNA de Cadeia Dupla
3.
Bioscience ; 72(9): 889-907, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36034512

RESUMO

Long-term observations and experiments in diverse drylands reveal how ecosystems and services are responding to climate change. To develop generalities about climate change impacts at dryland sites, we compared broadscale patterns in climate and synthesized primary production responses among the eight terrestrial, nonforested sites of the United States Long-Term Ecological Research (US LTER) Network located in temperate (Southwest and Midwest) and polar (Arctic and Antarctic) regions. All sites experienced warming in recent decades, whereas drought varied regionally with multidecadal phases. Multiple years of wet or dry conditions had larger effects than single years on primary production. Droughts, floods, and wildfires altered resource availability and restructured plant communities, with greater impacts on primary production than warming alone. During severe regional droughts, air pollution from wildfire and dust events peaked. Studies at US LTER drylands over more than 40 years demonstrate reciprocal links and feedbacks among dryland ecosystems, climate-driven disturbance events, and climate change.

4.
Materials (Basel) ; 15(15)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-35955201

RESUMO

High-purity TiO2 and CuO powders were synthesized by the Pechini method, an inexpensive and easy-to-implement procedure to synthetize metal oxides. The variables of synthesis were the ethylene glycol:citric acid molar ratio and the pH. High reproducibility of the anatase and tenorite phase was obtained for all synthesis routes. The degree of purity of the powders was confirmed by XRD, FTIR, UV-Vis absorption and XPS spectra. SEM and TEM images revealed the powders are composed of micrometer grains that can have a spherical shape (only in the TiO2) or formed by a non-compacted nanocrystalline conglomerate. FTIR spectra only displayed vibrational modes associating TiO2 and CuO with nanoparticle behavior. UV-Vis absorption spectra revealed the values of maximum absorbance percentage of both systems are reached in the ultraviolet region, with percentages above 83% throughout the entire visible light spectrum for the CuO system, a relevant result for solar cell applications. Finally, XPS experiments allow the observation of the valence bands and the calculation of the energy bands of all oxides.

5.
Oecologia ; 194(4): 735-744, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33130915

RESUMO

Understanding how global change drivers (GCDs) affect aboveground net primary production (ANPP) through time is essential to predicting the reliability and maintenance of ecosystem function and services in the future. While GCDs, such as drought, warming and elevated nutrients, are known to affect mean ANPP, less is known about how they affect inter-annual variability in ANPP. We examined 27 global change experiments located in 11 different herbaceous ecosystems that varied in both abiotic and biotic conditions, to investigate changes in the mean and temporal variability of ANPP (measured as the coefficient of variation) in response to different GCD manipulations, including resource additions, warming, and irrigation. From this comprehensive data synthesis, we found that GCD treatments increased mean ANPP. However, GCD manipulations both increased and decreased temporal variability of ANPP (24% of comparisons), with no net effect overall. These inconsistent effects on temporal variation in ANPP can, in part, be attributed to site characteristics, such as mean annual precipitation and temperature as well as plant community evenness. For example, decreases in temporal variability in ANPP with the GCD treatments occurred in wetter and warmer sites with lower plant community evenness. Further, the addition of several nutrients simultaneously increased the sensitivity of ANPP to interannual variation in precipitation. Based on this analysis, we expect that GCDs will likely affect the magnitude more than the reliability over time of ecosystem production in the future.


Assuntos
Ecossistema , Chuva , Secas , Plantas , Poaceae , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 116(36): 17867-17873, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31427510

RESUMO

Global change drivers (GCDs) are expected to alter community structure and consequently, the services that ecosystems provide. Yet, few experimental investigations have examined effects of GCDs on plant community structure across multiple ecosystem types, and those that do exist present conflicting patterns. In an unprecedented global synthesis of over 100 experiments that manipulated factors linked to GCDs, we show that herbaceous plant community responses depend on experimental manipulation length and number of factors manipulated. We found that plant communities are fairly resistant to experimentally manipulated GCDs in the short term (<10 y). In contrast, long-term (≥10 y) experiments show increasing community divergence of treatments from control conditions. Surprisingly, these community responses occurred with similar frequency across the GCD types manipulated in our database. However, community responses were more common when 3 or more GCDs were simultaneously manipulated, suggesting the emergence of additive or synergistic effects of multiple drivers, particularly over long time periods. In half of the cases, GCD manipulations caused a difference in community composition without a corresponding species richness difference, indicating that species reordering or replacement is an important mechanism of community responses to GCDs and should be given greater consideration when examining consequences of GCDs for the biodiversity-ecosystem function relationship. Human activities are currently driving unparalleled global changes worldwide. Our analyses provide the most comprehensive evidence to date that these human activities may have widespread impacts on plant community composition globally, which will increase in frequency over time and be greater in areas where communities face multiple GCDs simultaneously.


Assuntos
Biodiversidade , Ecossistema , Plantas , Teorema de Bayes , Mudança Climática , Atividades Humanas , Humanos
7.
Pediatr Rheumatol Online J ; 15(1): 68, 2017 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-28830457

RESUMO

BACKGROUND: With modern treatments, the effect of juvenile idiopathic arthritis (JIA) on growth may be less than previously reported. Our objective was to describe height, weight and body mass index (BMI) development in a contemporary JIA inception cohort. METHODS: Canadian children newly-diagnosed with JIA 2005-2010 had weight and height measurements every 6 months for 2 years, then yearly up to 5 years. These measurements were used to calculate mean age- and sex-standardized Z-scores, and estimate prevalence and cumulative incidence of growth impairments, and the impact of disease activity and corticosteroids on growth. RESULTS: One thousand one hundred forty seven children were followed for median 35.5 months. Mean Z-scores, and the point prevalence of short stature (height < 2.5th percentile, 2.5% to 3.4%) and obesity (BMI > 95th percentile, 15.8% to 16.4%) remained unchanged in the whole cohort. Thirty-three children (2.9%) developed new-onset short stature, while 27 (2.4%) developed tall stature (>97.5th percentile). Children with systemic arthritis (n = 77) had an estimated 3-year cumulative incidence of 9.3% (95%CI: 4.3-19.7) for new-onset short stature and 34.4% (23-49.4) for obesity. Most children (81.7%) received no systemic corticosteroids, but 1 mg/Kg/day prednisone-equivalent maintained for 6 months corresponded to a drop of 0.64 height Z-scores (0.56-0.82) and an increase of 0.74 BMI Z-scores (0.56-0.92). An increase of 1 in the 10-cm physician global assessment of disease activity maintained for 6 months corresponded to a drop of 0.01 height Z-scores (0-0.02). CONCLUSIONS: Most children in this modern JIA cohort grew and gained weight as children in the general population. About 1 in 10 children who had systemic arthritis, uncontrolled disease and/or prolonged corticosteroid use, had increased risk of growth impairment.


Assuntos
Artrite Juvenil/complicações , Glucocorticoides/efeitos adversos , Transtornos do Crescimento/epidemiologia , Aumento de Peso/efeitos dos fármacos , Adolescente , Antropometria , Artrite Juvenil/tratamento farmacológico , Canadá/epidemiologia , Criança , Pré-Escolar , Feminino , Seguimentos , Glucocorticoides/uso terapêutico , Transtornos do Crescimento/etiologia , Humanos , Incidência , Masculino , Prevalência , Estudos Prospectivos
8.
J Cardiopulm Rehabil Prev ; 37(2): 124-129, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-27798506

RESUMO

BACKGROUND: Patients hospitalized with decompensated heart failure are at high risk for readmission within 30 days of discharge. Since physical inactivity is associated with increased health care utilization in other diseases, it may predict rehospitalization in heart failure. METHODS: In a single-center, prospective study, physical activity was measured following hospital discharge using an accelerometer on the wrist. We then related this activity to the 30-day all-cause rehospitalization rate in heart failure. Each minute of activity was dichotomized into higher or lower intensity, based on a threshold of 3000 vector magnitude units. Counts above this threshold corresponded to a higher level of physical activity. Logistic regression and Kaplan-Meier survival analyses were used to relate the activity group to 30-day readmissions. RESULTS: Ninety-five patients admitted to a heart failure unit were screened; 61 met inclusion criteria and provided consent. Fifty patients were evaluated. Forty-six percent were male, mean age was 71 ± 15 years, and 46% had left ventricular ejection fraction <40%. Thirty-day all-cause hospitalizations occurred in 13 of these 50 patients (26%). Sixty-six percent and 34% were dichotomized into the higher and lower physical activity groups, respectively, over the first week; the latter were more likely to be readmitted within 30 days, with an OR = 5.0 (95% CI, 1.3-19.1), P = .02. CONCLUSION: Physical inactivity is related to 30-day all-cause readmissions for heart failure. Further studies are necessary to assess causality and to determine whether treatments directed at increasing physical activity could reduce readmission rate.


Assuntos
Exercício Físico/fisiologia , Insuficiência Cardíaca/fisiopatologia , Readmissão do Paciente/estatística & dados numéricos , Comportamento Sedentário , Acelerometria/estatística & dados numéricos , Idoso , Feminino , Humanos , Estimativa de Kaplan-Meier , Masculino , Estudos Prospectivos , Fatores de Risco
9.
Ann Rheum Dis ; 75(6): 1092-8, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-25985972

RESUMO

OBJECTIVE: To describe probabilities and characteristics of disease flares in children with juvenile idiopathic arthritis (JIA) and to identify clinical features associated with an increased risk of flare. METHODS: We studied children in the Research in Arthritis in Canadian Children emphasizing Outcomes (ReACCh-Out) prospective inception cohort. A flare was defined as a recurrence of disease manifestations after attaining inactive disease and was called significant if it required intensification of treatment. Probability of first flare was calculated with Kaplan-Meier methods, and associated features were identified using Cox regression. RESULTS: 1146 children were followed up a median of 24 months after attaining inactive disease. We observed 627 first flares (54.7% of patients) with median active joint count of 1, physician global assessment (PGA) of 12 mm and duration of 27 weeks. Within a year after attaining inactive disease, the probability of flare was 42.5% (95% CI 39% to 46%) for any flare and 26.6% (24% to 30%) for a significant flare. Within a year after stopping treatment, it was 31.7% (28% to 36%) and 25.0% (21% to 29%), respectively. A maximum PGA >30 mm, maximum active joint count >4, rheumatoid factor (RF)-positive polyarthritis, antinuclear antibodies (ANA) and receiving disease-modifying antirheumatic drugs (DMARDs) or biological agents before attaining inactive disease were associated with increased risk of flare. Systemic JIA was associated with the lowest risk of flare. CONCLUSIONS: In this real-practice JIA cohort, flares were frequent, usually involved a few swollen joints for an average of 6 months and 60% led to treatment intensification. Children with a severe disease course had an increased risk of flare.


Assuntos
Antirreumáticos/uso terapêutico , Artrite Juvenil/patologia , Progressão da Doença , Anticorpos Antinucleares/sangue , Artrite Juvenil/sangue , Artrite Juvenil/tratamento farmacológico , Fatores Biológicos/uso terapêutico , Canadá , Criança , Feminino , Seguimentos , Humanos , Estimativa de Kaplan-Meier , Masculino , Avaliação de Resultados em Cuidados de Saúde , Modelos de Riscos Proporcionais , Estudos Prospectivos , Recidiva , Fator Reumatoide/sangue , Fatores de Risco , Índice de Gravidade de Doença , Fatores de Tempo
10.
PLoS One ; 10(9): e0135253, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26359662

RESUMO

Biodiversity experiments show that increases in plant diversity can lead to greater biomass production, and some researchers suggest that high diversity plantings should be used for bioenergy production. However, many methods used in past biodiversity experiments are impractical for bioenergy plantings. For example, biodiversity experiments often use intensive management such as hand weeding to maintain low diversity plantings and exclude unplanted species, but this would not be done for bioenergy plantings. Also, biodiversity experiments generally use high seeding densities that would be too expensive for bioenergy plantings. Here we report the effects of biodiversity on biomass production from two studies of more realistic bioenergy crop plantings in southern Michigan, USA. One study involved comparing production between switchgrass (Panicum virgatum) monocultures and species-rich prairie plantings on private farm fields that were managed similarly to bioenergy plantings. The other study was an experiment where switchgrass was planted in monoculture and in combination with increasingly species-rich native prairie mixtures. Overall, we found that bioenergy plantings with higher species richness did not produce more biomass than switchgrass monocultures. The lack of a positive relationship between planted species richness and production in our studies may be due to several factors. Non-planted species (weeds) were not removed from our studies and these non-planted species may have competed with planted species and also prevented realized species richness from equaling planted species richness. Also, we found that low seeding density of individual species limited the biomass production of these individual species. Production in future bioenergy plantings with high species richness may be increased by using a high density of inexpensive seed from switchgrass and other highly productive species, and future efforts to translate the results of biodiversity experiments to bioenergy plantings should consider the role of seeding density.


Assuntos
Biodiversidade , Biocombustíveis , Ecossistema
11.
Oecologia ; 177(4): 935-47, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25663370

RESUMO

Many global change drivers chronically alter resource availability in terrestrial ecosystems. Such resource alterations are known to affect aboveground net primary production (ANPP) in the short term; however, it is unknown if patterns of response change through time. We examined the magnitude, direction, and pattern of ANPP responses to a wide range of global change drivers by compiling 73 datasets from long-term (>5 years) experiments that varied by ecosystem type, length of manipulation, and the type of manipulation. Chronic resource alterations resulted in a significant change in ANPP irrespective of ecosystem type, the length of the experiment, and the resource manipulated. However, the pattern of ecosystem response over time varied with ecosystem type and manipulation length. Continuous directional responses were the most common pattern observed in herbaceous-dominated ecosystems. Continuous directional responses also were frequently observed in longer-term experiments (>11 years) and were, in some cases, accompanied by large shifts in community composition. In contrast, stepped responses were common in forests and other ecosystems (salt marshes and dry valleys) and with nutrient manipulations. Our results suggest that the response of ANPP to chronic resource manipulations can be quite variable; however, responses persist once they occur, as few transient responses were observed. Shifts in plant community composition over time could be important determinants of patterns of terrestrial ecosystem sensitivity, but comparative, long-term studies are required to understand how and why ecosystems differ in their sensitivity to chronic resource alterations.


Assuntos
Aclimatação , Biodiversidade , Biomassa , Mudança Climática , Florestas , Plantas , Áreas Alagadas , Ecossistema
12.
Ecology ; 95(6): 1693-700, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25039233

RESUMO

Understanding how biotic mechanisms confer stability in variable environments is a fundamental quest in ecology, and one that is becoming increasingly urgent with global change. Several mechanisms, notably a portfolio effect associated with species richness, compensatory dynamics generated by negative species covariance and selection for stable dominant species populations can increase the stability of the overall community. While the importance of these mechanisms is debated, few studies have contrasted their importance in an environmental context. We analyzed nine long-term data sets of grassland species composition to investigate how two key environmental factors, precipitation amount and variability, may directly influence community stability and how they may indirectly influence stability via biotic mechanisms. We found that the importance of stability mechanisms varied along the environmental gradient: strong negative species covariance occurred in sites characterized by high precipitation variability, whereas portfolio effects increased in sites with high mean annual precipitation. Instead of questioning whether compensatory dynamics are important in nature, our findings suggest that debate should widen to include several stability mechanisms and how these mechanisms vary in importance across environmental gradients.


Assuntos
Ecossistema , Modelos Biológicos , Plantas/classificação , Chuva , Demografia , Monitoramento Ambiental
13.
Proc Natl Acad Sci U S A ; 111(4): 1652-7, 2014 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-24474791

RESUMO

Agriculture is being challenged to provide food, and increasingly fuel, for an expanding global population. Producing bioenergy crops on marginal lands--farmland suboptimal for food crops--could help meet energy goals while minimizing competition with food production. However, the ecological costs and benefits of growing bioenergy feedstocks--primarily annual grain crops--on marginal lands have been questioned. Here we show that perennial bioenergy crops provide an alternative to annual grains that increases biodiversity of multiple taxa and sustain a variety of ecosystem functions, promoting the creation of multifunctional agricultural landscapes. We found that switchgrass and prairie plantings harbored significantly greater plant, methanotrophic bacteria, arthropod, and bird diversity than maize. Although biomass production was greater in maize, all other ecosystem services, including methane consumption, pest suppression, pollination, and conservation of grassland birds, were higher in perennial grasslands. Moreover, we found that the linkage between biodiversity and ecosystem services is dependent not only on the choice of bioenergy crop but also on its location relative to other habitats, with local landscape context as important as crop choice in determining provision of some services. Our study suggests that bioenergy policy that supports coordinated land use can diversify agricultural landscapes and sustain multiple critical ecosystem services.


Assuntos
Biodiversidade , Conservação de Recursos Energéticos , Ecossistema , Poaceae , Animais
14.
Bioscience ; 64(5): 404-415, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-26955069

RESUMO

A balanced assessment of ecosystem services provided by agriculture requires a systems-level socioecological understanding of related management practices at local to landscape scales. The results from 25 years of observation and experimentation at the Kellogg Biological Station long-term ecological research site reveal services that could be provided by intensive row-crop ecosystems. In addition to high yields, farms could be readily managed to contribute clean water, biocontrol and other biodiversity benefits, climate stabilization, and long-term soil fertility, thereby helping meet society's need for agriculture that is economically and environmentally sustainable. Midwest farmers-especially those with large farms-appear willing to adopt practices that deliver these services in exchange for payments scaled to management complexity and farmstead benefit. Surveyed citizens appear willing to pay farmers for the delivery of specific services, such as cleaner lakes. A new farming for services paradigm in US agriculture seems feasible and could be environmentally significant.

15.
Ecology ; 94(8): 1687-96, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24015513

RESUMO

Climate gradients shape spatial variation in the richness and composition of plant communities. Given future predicted changes in climate means and variability, and likely regional variation in the magnitudes of these changes, it is important to determine how temporal variation in climate influences temporal variation in plant community structure. Here, we evaluated how species richness, turnover, and composition of grassland plant communities responded to interannual variation in precipitation by synthesizing long-term data from grasslands across the United States. We found that mean annual precipitation,(MAP) was a positive predictor of species richness across sites, but a positive temporal relationship between annual precipitation and richness was only evident within two sites with low MAP. We also found higher average rates of species turnover in dry sites that in turn had a high proportion of annual species, although interannual rates of species turnover were surprisingly high across all locations. Annual species were less abundant than perennial species at nearly all sites, and our analysis showed that the probability of a species being lost or gained from one year to the next increased with decreasing species abundance. Bray-Curtis dissimilarity from one year to the next, a measure of species composition change that is influenced mainly by abundant species, was insensitive to precipitation at all sites. These results suggest that the richness and turnover patterns we observed were driven primarily by rare species, which comprise the majority of the local species pools at these grassland sites. These findings are consistent with the idea that short-lived and less abundant species are more sensitive to interannual climate variability than longer-lived and more abundant species. We conclude that, among grassland ecosystems, xeric grasslands are likely to exhibit the greatest responsiveness of community composition (richness and turnover) to predicted future increases in interannual precipitation variability. Over the long-term, species composition may shift to reflect spatial patterns of mean precipitation; however, perennial-dominated systems will be buffered against rising interannual variation, while systems that have a large number of rare, annual species will show the greatest temporal variability in species composition in response to rising interannual variability in precipitation.


Assuntos
Plantas/classificação , Chuva , Biodiversidade , Monitoramento Ambiental , Especificidade da Espécie , Fatores de Tempo
16.
Oecologia ; 173(4): 1513-20, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23839265

RESUMO

Declines in species richness due to fertilization are typically rapid and associated with increases in aboveground production. However, in a long-term experiment examining the impacts of fertilization in an early successional community, we found it took 14 years for plant species richness to significantly decline in fertilized plots, despite fertilization causing a rapid increase in aboveground production. To determine what accounted for this lag in the species richness response, we examined several potential mechanisms. We found evidence suggesting the abundance of one functional group-tall species with long-distance (runner) clonality-drove changes in species richness, and we found little support for other mechanisms. Tall runner species initially increased in abundance due to fertilization, then declined dramatically and were not abundant again until later in the experiment, when species richness and the combined biomass of all other functional groups (non-tall runner) declined. Over 86 % of the species found throughout the course of our study are non-tall runner, and there is a strong negative relationship between non-tall runner and tall runner biomass. We therefore suggest that declines in species richness in the fertilized treatment are due to high tall runner abundance that decreases the abundance and richness of non-tall runner species. By identifying the functional group that drives declines in richness due to fertilization, our results help to elucidate how fertilization decreases plant richness and also suggest that declines in richness due to fertilization can be lessened by controlling the abundance of species with a tall runner growth form.


Assuntos
Biodiversidade , Fertilizantes , Plantas/classificação , Biomassa , Nitrogênio/metabolismo
18.
Nature ; 493(7433): 514-7, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23334409

RESUMO

Legislation on biofuels production in the USA and Europe is directing food crops towards the production of grain-based ethanol, which can have detrimental consequences for soil carbon sequestration, nitrous oxide emissions, nitrate pollution, biodiversity and human health. An alternative is to grow lignocellulosic (cellulosic) crops on 'marginal' lands. Cellulosic feedstocks can have positive environmental outcomes and could make up a substantial proportion of future energy portfolios. However, the availability of marginal lands for cellulosic feedstock production, and the resulting greenhouse gas (GHG) emissions, remains uncertain. Here we evaluate the potential for marginal lands in ten Midwestern US states to produce sizeable amounts of biomass and concurrently mitigate GHG emissions. In a comparative assessment of six alternative cropping systems over 20 years, we found that successional herbaceous vegetation, once well established, has a direct GHG emissions mitigation capacity that rivals that of purpose-grown crops (-851 ± 46 grams of CO(2) equivalent emissions per square metre per year (gCO(2)e m(-2) yr(-1))). If fertilized, these communities have the capacity to produce about 63 ± 5 gigajoules of ethanol energy per hectare per year. By contrast, an adjacent, no-till corn-soybean-wheat rotation produces on average 41 ± 1 gigajoules of biofuel energy per hectare per year and has a net direct mitigation capacity of -397 ± 32 gCO(2)e m(-2) yr(-1); a continuous corn rotation would probably produce about 62 ± 7 gigajoules of biofuel energy per hectare per year, with 13% less mitigation. We also perform quantitative modelling of successional vegetation on marginal lands in the region at a resolution of 0.4 hectares, constrained by the requirement that each modelled location be within 80 kilometres of a potential biorefinery. Our results suggest that such vegetation could produce about 21 gigalitres of ethanol per year from around 11 million hectares, or approximately 25 per cent of the 2022 target for cellulosic biofuel mandated by the US Energy Independence and Security Act of 2007, with no initial carbon debt nor the indirect land-use costs associated with food-based biofuels. Other regional-scale aspects of biofuel sustainability, such as water quality and biodiversity, await future study.


Assuntos
Agricultura/métodos , Biocombustíveis/provisão & distribuição , Energia Renovável/estatística & dados numéricos , Agricultura/estatística & dados numéricos , Biocombustíveis/estatística & dados numéricos , Biomassa , Pegada de Carbono/estatística & dados numéricos , Celulose/metabolismo , Produtos Agrícolas/economia , Produtos Agrícolas/crescimento & desenvolvimento , Política Ambiental , Etanol/metabolismo , Etanol/provisão & distribuição , Combustíveis Fósseis/estatística & dados numéricos , Efeito Estufa/prevenção & controle , Efeito Estufa/estatística & dados numéricos , Michigan , Meio-Oeste dos Estados Unidos
19.
Oecologia ; 169(4): 1053-62, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22302512

RESUMO

Nutrient addition to grasslands consistently causes species richness declines and productivity increases. Competition, particularly for light, is often assumed to produce this result. Using a long-term dataset from North American herbaceous plant communities, we tested whether height and clonal growth form together predict responses to fertilization because neither trait alone predicted species loss in a previous analysis. Species with a tall-runner growth form commonly increased in relative abundance in response to added nitrogen, while short species and those with a tall-clumped clonal growth form often decreased. The ability to increase in size via vegetative spread across space, while simultaneously occupying the canopy, conferred competitive advantage, although typically only the abundance of a single species within each height-clonal growth form significantly responded to fertilization in each experiment. Classifying species on the basis of two traits (height and clonal growth form) increases our ability to predict species responses to fertilization compared to either trait alone in predominantly herbaceous plant communities. Electronic supplementary material The online version of this article (doi:10.1007/s00442-012-2264-5) contains supplementary material, which is available to authorized users.


Assuntos
Nitrogênio/fisiologia , Desenvolvimento Vegetal , Elymus/crescimento & desenvolvimento , Fertilizantes , América do Norte , Panicum/crescimento & desenvolvimento , Solo , Especificidade da Espécie
20.
Am Nat ; 177(5): 574-88, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21508605

RESUMO

Spatial heterogeneity in soil resources is widely thought to promote plant species coexistence, and this mechanism figures prominently in resource-ratio models of competition. However, most experimental studies have found that nutrient enhancements depress diversity regardless of whether nutrients are uniformly or heterogeneously applied. This mismatch between theory and empirical pattern is potentially due to an interaction between plant size and the scale of resource heterogeneity. Clonal plants that spread vegetatively via rhizomes or stolons can grow large and may integrate across resource patches, thus reducing the positive effect of small-scale resource heterogeneity on plant species richness. Many rhizomatous clonal species respond strongly to increased soil fertility, and they have been hypothesized to drive the descending arm of the hump-shaped productivity-diversity relationship in grasslands. We tested whether clonals reduce species richness in a grassland community by manipulating nutrient heterogeneity, soil fertility, and the presence of rhizomatous clonal species in a 6-year field experiment. We found strong and consistent negative effects of clonals on species richness. These effects were greatest at high fertility and when soil resources were applied at a scale at which rhizomatous clonals could integrate across resource patches. Thus, we find support for the hypothesis that plant size and resource heterogeneity interact to determine species diversity.


Assuntos
Ecossistema , Fertilizantes , Magnoliopsida/crescimento & desenvolvimento , Solo/química , Michigan , Reprodução Assexuada , Rizoma/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA