Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mater Chem A Mater ; 11(44): 23640-23652, 2023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-38014362

RESUMO

Monograin powder technology is one possible path to developing sustainable, lightweight, flexible, and semi-transparent solar cells, which might be ideal for integration with various building and product elements. In recent years, the main research focus of monograin technology has centered around understanding the synthesis and optoelectronic properties of kesterite-type absorber materials. Among these, Cu2ZnSnS4 (CZTS) stands out as a promising solar cell absorber due to its favorable optical and electrical characteristics. CZTS is particularly appealing as its constituent elements are abundant and non-toxic, and it currently holds the record for highest power conversion efficiency (PCE) among emerging inorganic thin-film PV candidates. Despite its advantages, kesterite solar cells' PCE still falls significantly behind the theoretical maximum efficiency due to the large VOC deficit. This review explores various strategies aimed at improving VOC losses to enhance the overall performance of CZTS monograin layer solar cells. It was found that low-temperature post-annealing of CZTS powders reduced Cu-Zn disordering, increasing Eg by ∼100 meV and VOC values; however, achieving the optimal balance between ordered and disordered regions in kesterite materials is crucial for enhancing photovoltaic device performance due to the coexistence of ordered and disordered phases. CZTS alloying with Ag and Cd suppressed non-radiative recombination and increased short-circuit current density. Optimizing Ag content at 1% reduced CuZn antisite defects, but higher Ag levels compensated for acceptor defects, leading to reduced carrier density and decreased solar cell performance. Co-doping with Li and K resulted in an increased bandgap (1.57 eV) and improved VOC, but further optimization is required due to a relatively large difference between measured and theoretical VOC. Heterojunction modifications led to the most effective PCE improvement in CZTS-based solar cells, achieving an overall efficiency of 12.06%.

2.
ACS Omega ; 8(41): 37958-37970, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867715

RESUMO

Alkali-metal-based synthesis of transition metal dichalcogenide (TMD) monolayers is an established strategy for both ultralarge lateral growth and promoting the metastable 1T phase. However, whether this can also lead to modified optical properties is underexplored, with reported photoluminescence (PL) spectra from semiconducting systems showing little difference from more traditional syntheses. Here, we show that the growth of WS2 monolayers from a potassium-salt precursor can lead to a pronounced low-energy emission in the PL spectrum. This is seen 200-300 meV below the A exciton and can dominate the signal at room temperature. The emission is spatially heterogeneous, and its presence is attributed to defects in the layer due to sublinear intensity power dependence, a noticeable aging effect, and insensitivity to washing in water and acetone. Interestingly, statistical analysis links the band to an increase in the width of the A1g Raman band. The emission can be controlled by altering when hydrogen is introduced into the growth process. This work demonstrates intrinsic and intense defect-related emission at room temperature and establishes further opportunities for tuning TMD properties through alkali-metal precursors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...