Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Immunol ; 79(12): 825-833, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30321631

RESUMO

The goals of the KIR component of the 17th International HLA and Immunogenetics Workshop (IHIW) were to encourage and educate researchers to begin analyzing KIR at allelic resolution, and to survey the nature and extent of KIR allelic diversity across human populations. To represent worldwide diversity, we analyzed 1269 individuals from ten populations, focusing on the most polymorphic KIR genes, which express receptors having three immunoglobulin (Ig)-like domains (KIR3DL1/S1, KIR3DL2 and KIR3DL3). We identified 13 novel alleles of KIR3DL1/S1, 13 of KIR3DL2 and 18 of KIR3DL3. Previously identified alleles, corresponding to 33 alleles of KIR3DL1/S1, 38 of KIR3DL2, and 43 of KIR3DL3, represented over 90% of the observed allele frequencies for these genes. In total we observed 37 KIR3DL1/S1 allotypes, 40 for KIR3DL2 and 44 for KIR3DL3. As KIR allotype diversity can affect NK cell function, this demonstrates potential for high functional diversity worldwide. Allelic variation further diversifies KIR haplotypes. We determined KIR3DL3 ∼ KIR3DL1/S1 ∼ KIR3DL2 haplotypes from five of the studied populations, and observed multiple population-specific haplotypes in each. This included 234 distinct haplotypes in European Americans, 191 in Ugandans, 35 in Papuans, 95 in Egyptians and 86 in Spanish populations. For another 35 populations, encompassing 642,105 individuals we focused on KIR3DL2 and identified another 375 novel alleles, with approximately half of them observed in more than one individual. The KIR allelic level data gathered from this project represents the most comprehensive summary of global KIR allelic diversity to date, and continued analysis will improve understanding of KIR allelic polymorphism in global populations. Further, the wealth of new data gathered in the course of this workshop component highlights the value of collaborative, community-based efforts in immunogenetics research, exemplified by the IHIW.


Assuntos
Antígenos HLA/genética , Imunogenética/métodos , Família Multigênica , Receptores KIR/genética , Frequência do Gene , Genética Populacional/métodos , Genótipo , Haplótipos , Humanos , Isoformas de Proteínas/genética , Análise de Sequência de DNA
2.
Am J Respir Cell Mol Biol ; 59(6): 713-722, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30084659

RESUMO

Human rhinovirus (RV) infections are a significant risk factor for exacerbations of asthma and chronic obstructive pulmonary disease. Thus, approaches to prevent RV infection in such patients would give significant benefit. Through RNA interference library screening, we identified lanosterol synthase (LSS), a component of the cholesterol biosynthetic pathway, as a novel regulator of RV replication in primary normal human bronchial epithelial cells. Selective knock down of LSS mRNA with short interfering RNA inhibited RV2 replication in normal human bronchial epithelial cells. Small molecule inhibitors of LSS mimicked the effect of LSS mRNA knockdown in a concentration-dependent manner. We further demonstrated that the antiviral effect is not dependent on a reduction in total cellular cholesterol but requires a 24-hour preincubation with the LSS inhibitor. The rank order of antiviral potency of the LSS inhibitors used was consistent with LSS inhibition potency; however, all compounds showed remarkably higher potency against RV compared with the LSS enzyme potency. We showed that LSS inhibition led to an induction of 24(S),25 epoxycholesterol, an important regulator of the sterol pathway. We also demonstrated that LSS inhibition led to a profound increase in expression of the innate antiviral defense protein, IFN-ß. We found LSS to be a novel regulator of RV replication and innate antiviral immunity and identified a potential molecular mechanism for this effect, via induction of 24(S),25 epoxycholesterol. Inhibition of LSS could therefore be a novel therapeutic target for prevention of RV-induced exacerbations.


Assuntos
Antivirais/farmacologia , Brônquios/imunologia , Células Epiteliais/imunologia , Imunidade Inata/imunologia , Transferases Intramoleculares/metabolismo , Infecções por Picornaviridae/imunologia , Rhinovirus/imunologia , Replicação Viral/imunologia , Brônquios/efeitos dos fármacos , Brônquios/virologia , Células Cultivadas , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Humanos , Imunidade Inata/efeitos dos fármacos , Transferases Intramoleculares/antagonistas & inibidores , Transferases Intramoleculares/genética , Infecções por Picornaviridae/tratamento farmacológico , Infecções por Picornaviridae/virologia , RNA Interferente Pequeno/genética , Rhinovirus/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Replicação Viral/efeitos dos fármacos
3.
PLoS One ; 10(11): e0140909, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26560490

RESUMO

Previous studies have demonstrated that nucleic acid polymers (NAPs) have both entry and post-entry inhibitory activity against duck hepatitis B virus (DHBV) infection. The inhibitory activity exhibited by NAPs prevented DHBV infection of primary duck hepatocytes in vitro and protected ducks from DHBV infection in vivo and did not result from direct activation of the immune response. In the current study treatment of primary human hepatocytes with NAP REP 2055 did not induce expression of the TNF, IL6, IL10, IFNA4 or IFNB1 genes, confirming the lack of direct immunostimulation by REP 2055. Ducks with persistent DHBV infection were treated with NAP 2055 to determine if the post-entry inhibitory activity exhibited by NAPs could provide a therapeutic effect against established DHBV infection in vivo. In all REP 2055-treated ducks, 28 days of treatment lead to initial rapid reductions in serum DHBsAg and DHBV DNA and increases in anti-DHBs antibodies. After treatment, 6/11 ducks experienced a sustained virologic response: DHBsAg and DHBV DNA remained at low or undetectable levels in the serum and no DHBsAg or DHBV core antigen positive hepatocytes and only trace amounts of DHBV total and covalently closed circular DNA (cccDNA) were detected in the liver at 9 or 16 weeks of follow-up. In the remaining 5/11 REP 2055-treated ducks, all markers of DHBV infection rapidly rebounded after treatment withdrawal: At 9 and 16 weeks of follow-up, levels of DHBsAg and DHBcAg and DHBV total and cccDNA in the liver had rebounded and matched levels observed in the control ducks treated with normal saline which remained persistently infected with DHBV. These data demonstrate that treatment with the NAP REP 2055 can lead to sustained control of persistent DHBV infection. These effects may be related to the unique ability of REP 2055 to block release of DHBsAg from infected hepatocytes.


Assuntos
Antivirais/uso terapêutico , Vírus da Hepatite do Pato/isolamento & purificação , Hepatite Viral Animal/tratamento farmacológico , Oligodesoxirribonucleotídeos/uso terapêutico , Infecções por Picornaviridae/tratamento farmacológico , Animais , Citocinas/biossíntese , Patos , Hepatite Viral Animal/patologia , Hepatite Viral Animal/virologia , Infecções por Picornaviridae/patologia , Infecções por Picornaviridae/virologia
4.
Retrovirology ; 10: 45, 2013 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-23618494

RESUMO

BACKGROUND: Foamy viruses (FVs) have developed a unique budding strategy within the retrovirus family. FV release requires co-expression and a highly specific interaction between capsid (Gag) and glycoprotein (Env), which cannot be complemented by heterologous Env proteins. The interaction domain in FV Env has been mapped in greater detail and resides mainly in the N-terminal tip of the cytoplasmic domain of the Env leader peptide subunit. In contrast, the corresponding domain within Gag is less well defined. Previous investigations suggest that it is located within the N-terminal part of the protein. RESULTS: Here we characterized additional Gag interaction determinants of the prototype FV (PFV) isolate using a combination of particle release, GST pull-down and single cycle infectivity analysis assays. Our results demonstrate that a minimal PFV Gag protein comprising the N-terminal 129 aa was released into the supernatant, whereas proteins lacking this domain failed to do so. Fine mapping of domains within the N-terminus of PFV Gag revealed that the N-terminal 10 aa of PFV Gag were dispensable for viral replication. In contrast, larger deletions or structurally deleterious point mutations in C-terminally adjacent sequences predicted to harbor a helical region abolished particle egress and Gag - Env protein interaction. Pull-down assays, using proteins of mammalian and prokaryotic origin, support the previous hypothesis of a direct interaction of both PFV proteins without requirement for cellular cofactors and suggest a potential direct contact of Env through this N-terminal Gag domain. Furthermore, analysis of point mutants within this domain in context of PFV vector particles indicates additional particle release-independent functions for this structure in viral replication by directly affecting virion infectivity. CONCLUSIONS: Thus, our results demonstrate not only a critical function of an N-terminal PFV Gag motif for the essential capsid - glycoprotein interaction required for virus budding but also point out additional functions that affect virion infectivity.


Assuntos
Produtos do Gene gag/química , Produtos do Gene gag/metabolismo , Spumavirus/fisiologia , Ligação Viral , Liberação de Vírus , Produtos do Gene env/química , Produtos do Gene env/metabolismo , Humanos , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Virulência
5.
Retrovirology ; 7: 45, 2010 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-20478027

RESUMO

BACKGROUND: The foamy virus (FV) replication cycle displays several unique features, which set them apart from orthoretroviruses. First, like other B/D type orthoretroviruses, FV capsids preassemble at the centrosome, but more similar to hepadnaviruses, FV budding is strictly dependent on cognate viral glycoprotein coexpression. Second, the unusually broad host range of FV is thought to be due to use of a very common entry receptor present on host cell plasma membranes, because all cell lines tested in vitro so far are permissive. RESULTS: In order to take advantage of modern fluorescent microscopy techniques to study FV replication, we have created FV Gag proteins bearing a variety of protein tags and evaluated these for their ability to support various steps of FV replication. Addition of even small N-terminal HA-tags to FV Gag severely impaired FV particle release. For example, release was completely abrogated by an N-terminal autofluorescent protein (AFP) fusion, despite apparently normal intracellular capsid assembly. In contrast, C-terminal Gag-tags had only minor effects on particle assembly, egress and particle morphogenesis. The infectivity of C-terminal capsid-tagged FV vector particles was reduced up to 100-fold in comparison to wild type; however, infectivity was rescued by coexpression of wild type Gag and assembly of mixed particles. Specific dose-dependent binding of fluorescent FV particles to target cells was demonstrated in an Env-dependent manner, but not binding to target cell-extracted- or synthetic- lipids. Screening of target cells of various origins resulted in the identification of two cell lines, a human erythroid precursor- and a zebrafish- cell line, resistant to FV Env-mediated FV- and HIV-vector transduction. CONCLUSIONS: We have established functional, autofluorescent foamy viral particles as a valuable new tool to study FV--host cell interactions using modern fluorescent imaging techniques. Furthermore, we succeeded for the first time in identifying two cell lines resistant to Prototype Foamy Virus Env-mediated gene transfer. Interestingly, both cell lines still displayed FV Env-dependent attachment of fluorescent retroviral particles, implying a post-binding block potentially due to lack of putative FV entry cofactors. These cell lines might ultimately lead to the identification of the currently unknown ubiquitous cellular entry receptor(s) of FVs.


Assuntos
Interações Hospedeiro-Patógeno , Proteínas Luminescentes/genética , Vírus Espumoso dos Símios/fisiologia , Proteínas Virais/genética , Virologia/métodos , Animais , Linhagem Celular , Humanos , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência/métodos , Recombinação Genética , Vírus Espumoso dos Símios/genética , Coloração e Rotulagem/métodos , Proteínas Virais/fisiologia , Peixe-Zebra
6.
J Virol ; 83(17): 8396-408, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19535448

RESUMO

During a hepadnavirus infection, viral DNA integrates at a low rate into random sites in the host DNA, producing unique virus-cell junctions detectable by inverse nested PCR (invPCR). These junctions serve as genetic markers of individual hepatocytes, providing a means to detect their subsequent proliferation into clones of two or more hepatocytes. A previous study suggested that the livers of 2.4-year-old woodchucks (Marmota monax) chronically infected with woodchuck hepatitis virus contained at least 100,000 clones of >1,000 hepatocytes (W. S. Mason, A. R. Jilbert, and J. Summers, Proc. Natl. Acad. Sci. USA 102:1139-1144, 2005). However, possible correlations between sites of viral-DNA integration and clonal expansion could not be explored because the woodchuck genome has not yet been sequenced. In order to further investigate this issue, we looked for similar clonal expansion of hepatocytes in the livers of chimpanzees chronically infected with hepatitis B virus (HBV). Liver samples for invPCR were collected from eight chimpanzees chronically infected with HBV for at least 20 years. Fifty clones ranging in size from approximately 35 to 10,000 hepatocytes were detected using invPCR in 32 liver biopsy fragments (approximately 1 mg) containing, in total, approximately 3 x 10(7) liver cells. Based on searching the analogous human genome, integration sites were found on all chromosomes except Y, approximately 30% in known or predicted genes. However, no obvious association between the extent of clonal expansion and the integration site was apparent. This suggests that the integration site per se is not responsible for the outgrowth of large clones of hepatocytes.


Assuntos
Vírus da Hepatite B/patogenicidade , Hepatite B Crônica/patologia , Hepatite B Crônica/virologia , Hepatócitos/virologia , Fígado/patologia , Pan troglodytes/virologia , Animais , DNA Viral/genética , Humanos , Reação em Cadeia da Polimerase/métodos , Provírus/genética , Integração Viral
7.
J Virol ; 83(4): 1778-89, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19073743

RESUMO

Transient hepadnavirus infections can involve spread of virus to the entire hepatocyte population. In this situation hepatocytes present following recovery are derived from infected hepatocytes. During virus clearance antiviral cytokines are thought to block virus replication and formation of new covalently closed circular DNA (cccDNA), the viral transcriptional template. It remains unclear if existing cccDNA is eliminated noncytolytically or if hepatocyte death and proliferation, to compensate for killing of some of the infected hepatocytes, are needed to remove cccDNA from surviving infected hepatocytes. Interpreting the relationship between hepatocyte death and cccDNA elimination requires knowing both the amount of hepatocyte turnover and whether cccDNA synthesis is effectively blocked during the period of immune destruction of infected hepatocytes. We have addressed these questions by asking if treatment of woodchucks with the nucleoside analog inhibitor of viral DNA synthesis entecavir (ETV) reduced hepatocyte turnover during clearance of transient woodchuck hepatitis virus (WHV) infections. To estimate hepatocyte turnover, complexity analysis was carried out on virus-cell DNA junctions created by integration of WHV and present following recovery in the livers of WHV-infected control or ETV-treated woodchucks. We estimated that, on average, 2.2 to 4.8 times less hepatocyte turnover occurred during immune clearance in the ETV-treated woodchucks. Computer modeling of the complexity data suggests that mechanisms in addition to hepatocyte death were responsible for elimination of cccDNA during recovery from transient infections.


Assuntos
Antivirais/uso terapêutico , Guanina/análogos & derivados , Vírus da Hepatite B da Marmota/efeitos dos fármacos , Hepatite B/patologia , Hepatite B/virologia , Hepatócitos/virologia , Replicação Viral/efeitos dos fármacos , Animais , DNA Viral/análise , Guanina/uso terapêutico , Hepatite B/tratamento farmacológico , Hepatócitos/química , Regeneração Hepática , Marmota
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...