Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 14(1): 1721, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977724

RESUMO

Industrial contaminants accumulated in Arctic permafrost regions have been largely neglected in existing climate impact analyses. Here we identify about 4500 industrial sites where potentially hazardous substances are actively handled or stored in the permafrost-dominated regions of the Arctic. Furthermore, we estimate that between 13,000 and 20,000 contaminated sites are related to these industrial sites. Ongoing climate warming will increase the risk of contamination and mobilization of toxic substances since about 1100 industrial sites and 3500 to 5200 contaminated sites located in regions of stable permafrost will start to thaw before the end of this century. This poses a serious environmental threat, which is exacerbated by climate change in the near future. To avoid future environmental hazards, reliable long-term planning strategies for industrial and contaminated sites are needed that take into account the impacts of cimate change.

2.
Viruses ; 15(2)2023 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-36851778

RESUMO

One quarter of the Northern hemisphere is underlain by permanently frozen ground, referred to as permafrost. Due to climate warming, irreversibly thawing permafrost is releasing organic matter frozen for up to a million years, most of which decomposes into carbon dioxide and methane, further enhancing the greenhouse effect. Part of this organic matter also consists of revived cellular microbes (prokaryotes, unicellular eukaryotes) as well as viruses that have remained dormant since prehistorical times. While the literature abounds on descriptions of the rich and diverse prokaryotic microbiomes found in permafrost, no additional report about "live" viruses have been published since the two original studies describing pithovirus (in 2014) and mollivirus (in 2015). This wrongly suggests that such occurrences are rare and that "zombie viruses" are not a public health threat. To restore an appreciation closer to reality, we report the preliminary characterizations of 13 new viruses isolated from seven different ancient Siberian permafrost samples, one from the Lena river and one from Kamchatka cryosol. As expected from the host specificity imposed by our protocol, these viruses belong to five different clades infecting Acanthamoeba spp. but not previously revived from permafrost: Pandoravirus, Cedratvirus, Megavirus, and Pacmanvirus, in addition to a new Pithovirus strain.


Assuntos
Acanthamoeba , Pergelissolo , Eucariotos , Células Eucarióticas , Dióxido de Carbono
3.
Glob Chang Biol ; 29(10): 2714-2731, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36811358

RESUMO

Thermokarst lagoons represent the transition state from a freshwater lacustrine to a marine environment, and receive little attention regarding their role for greenhouse gas production and release in Arctic permafrost landscapes. We studied the fate of methane (CH4 ) in sediments of a thermokarst lagoon in comparison to two thermokarst lakes on the Bykovsky Peninsula in northeastern Siberia through the analysis of sediment CH4 concentrations and isotopic signature, methane-cycling microbial taxa, sediment geochemistry, lipid biomarkers, and network analysis. We assessed how differences in geochemistry between thermokarst lakes and thermokarst lagoons, caused by the infiltration of sulfate-rich marine water, altered the microbial methane-cycling community. Anaerobic sulfate-reducing ANME-2a/2b methanotrophs dominated the sulfate-rich sediments of the lagoon despite its known seasonal alternation between brackish and freshwater inflow and low sulfate concentrations compared to the usual marine ANME habitat. Non-competitive methylotrophic methanogens dominated the methanogenic community of the lakes and the lagoon, independent of differences in porewater chemistry and depth. This potentially contributed to the high CH4 concentrations observed in all sulfate-poor sediments. CH4 concentrations in the freshwater-influenced sediments averaged 1.34 ± 0.98 µmol g-1 , with highly depleted δ13 C-CH4 values ranging from -89‰ to -70‰. In contrast, the sulfate-affected upper 300 cm of the lagoon exhibited low average CH4 concentrations of 0.011 ± 0.005 µmol g-1 with comparatively enriched δ13 C-CH4 values of -54‰ to -37‰ pointing to substantial methane oxidation. Our study shows that lagoon formation specifically supports methane oxidizers and methane oxidation through changes in pore water chemistry, especially sulfate, while methanogens are similar to lake conditions.


Assuntos
Sedimentos Geológicos , Microbiota , Metano/análise , Anaerobiose , Lagos , Água/análise , Sulfatos/análise
4.
Nat Commun ; 13(1): 6074, 2022 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-36241637

RESUMO

Nitrogen regulates multiple aspects of the permafrost climate feedback, including plant growth, organic matter decomposition, and the production of the potent greenhouse gas nitrous oxide. Despite its importance, current estimates of permafrost nitrogen are highly uncertain. Here, we compiled a dataset of >2000 samples to quantify nitrogen stocks in the Yedoma domain, a region with organic-rich permafrost that contains ~25% of all permafrost carbon. We estimate that the Yedoma domain contains 41.2 gigatons of nitrogen down to ~20 metre for the deepest unit, which increases the previous estimate for the entire permafrost zone by ~46%. Approximately 90% of this nitrogen (37 gigatons) is stored in permafrost and therefore currently immobile and frozen. Here, we show that of this amount, ¾ is stored >3 metre depth, but if partially mobilised by thaw, this large nitrogen pool could have continental-scale consequences for soil and aquatic biogeochemistry and global-scale consequences for the permafrost feedback.


Assuntos
Gases de Efeito Estufa , Pergelissolo , Carbono/análise , Nitrogênio/análise , Óxido Nitroso , Pergelissolo/química , Solo/química
5.
Sci Rep ; 12(1): 7123, 2022 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-35504957

RESUMO

Beavers were not previously recognized as an Arctic species, and their engineering in the tundra is considered negligible. Recent findings suggest that beavers have moved into Arctic tundra regions and are controlling surface water dynamics, which strongly influence permafrost and landscape stability. Here we use 70 years of satellite images and aerial photography to show the scale and magnitude of northwestward beaver expansion in Alaska, indicated by the construction of over 10,000 beaver ponds in the Arctic tundra. The number of beaver ponds doubled in most areas between ~ 2003 and ~ 2017. Earlier stages of beaver engineering are evident in ~ 1980 imagery, and there is no evidence of beaver engineering in ~ 1952 imagery, consistent with observations from Indigenous communities describing the influx of beavers over the period. Rapidly expanding beaver engineering has created a tundra disturbance regime that appears to be thawing permafrost and exacerbating the effects of climate change.


Assuntos
Lagoas , Roedores , Alaska , Animais , Regiões Árticas , Tundra
6.
Ambio ; 51(2): 439-455, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34850356

RESUMO

Arctic warming is causing ancient perennially frozen ground (permafrost) to thaw, resulting in ground collapse, and reshaping of landscapes. This threatens Arctic peoples' infrastructure, cultural sites, and land-based natural resources. Terrestrial permafrost thaw and ongoing intensification of hydrological cycles also enhance the amount and alter the type of organic carbon (OC) delivered from land to Arctic nearshore environments. These changes may affect coastal processes, food web dynamics and marine resources on which many traditional ways of life rely. Here, we examine how future projected increases in runoff and permafrost thaw from two permafrost-dominated Siberian watersheds-the Kolyma and Lena, may alter carbon turnover rates and OC distributions through river networks. We demonstrate that the unique composition of terrestrial permafrost-derived OC can cause significant increases to aquatic carbon degradation rates (20 to 60% faster rates with 1% permafrost OC). We compile results on aquatic OC degradation and examine how strengthening Arctic hydrological cycles may increase the connectivity between terrestrial landscapes and receiving nearshore ecosystems, with potential ramifications for coastal carbon budgets and ecosystem structure. To address the future challenges Arctic coastal communities will face, we argue that it will become essential to consider how nearshore ecosystems will respond to changing coastal inputs and identify how these may affect the resiliency and availability of essential food resources.


Assuntos
Pergelissolo , Regiões Árticas , Ecossistema , Oceanos e Mares , Rios
7.
Microlife ; 3: uqac003, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-37223356

RESUMO

In the context of global warming, the melting of Arctic permafrost raises the threat of a reemergence of microorganisms some of which were shown to remain viable in ancient frozen soils for up to half a million years. In order to evaluate this risk, it is of interest to acquire a better knowledge of the composition of the microbial communities found in this understudied environment. Here, we present a metagenomic analysis of 12 soil samples from Russian Arctic and subarctic pristine areas: Chukotka, Yakutia and Kamchatka, including nine permafrost samples collected at various depths. These large datasets (9.2 × 1011 total bp) were assembled (525 313 contigs > 5 kb), their encoded protein contents predicted, and then used to perform taxonomical assignments of bacterial, archaeal and eukaryotic organisms, as well as DNA viruses. The various samples exhibited variable DNA contents and highly diverse taxonomic profiles showing no obvious relationship with their locations, depths or deposit ages. Bacteria represented the largely dominant DNA fraction (95%) in all samples, followed by archaea (3.2%), surprisingly little eukaryotes (0.5%), and viruses (0.4%). Although no common taxonomic pattern was identified, the samples shared unexpected high frequencies of ß-lactamase genes, almost 0.9 copy/bacterial genome. In addition to known environmental threats, the particularly intense warming of the Arctic might thus enhance the spread of bacterial antibiotic resistances, today's major challenge in public health. ß-Lactamases were also observed at high frequency in other types of soils, suggesting their general role in the regulation of bacterial populations.

8.
Glob Chang Biol ; 27(12): 2822-2839, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33774862

RESUMO

Permafrost thaw leads to thermokarst lake formation and talik growth tens of meters deep, enabling microbial decomposition of formerly frozen organic matter (OM). We analyzed two 17-m-long thermokarst lake sediment cores taken in Central Yakutia, Russia. One core was from an Alas lake in a Holocene thermokarst basin that underwent multiple lake generations, and the second core from a young Yedoma upland lake (formed ~70 years ago) whose sediments have thawed for the first time since deposition. This comparison provides a glance into OM fate in thawing Yedoma deposits. We analyzed total organic carbon (TOC) and dissolved organic carbon (DOC) content, n-alkane concentrations, and bacterial and archaeal membrane markers. Furthermore, we conducted 1-year-long incubations (4°C, dark) and measured anaerobic carbon dioxide (CO2 ) and methane (CH4 ) production. The sediments from both cores contained little TOC (0.7 ± 0.4 wt%), but DOC values were relatively high, with the highest values in the frozen Yedoma lake sediments (1620 mg L-1 ). Cumulative greenhouse gas (GHG) production after 1 year was highest in the Yedoma lake sediments (226 ± 212 µg CO2 -C g-1  dw, 28 ± 36 µg CH4 -C g-1  dw) and 3 and 1.5 times lower in the Alas lake sediments, respectively (75 ± 76 µg CO2 -C g-1  dw, 19 ± 29 µg CH4 -C g-1  dw). The highest CO2 production in the frozen Yedoma lake sediments likely results from decomposition of readily bioavailable OM, while highest CH4 production in the non-frozen top sediments of this core suggests that methanogenic communities established upon thaw. The lower GHG production in the non-frozen Alas lake sediments resulted from advanced OM decomposition during Holocene talik development. Furthermore, we found that drivers of CO2 and CH4 production differ following thaw. Our results suggest that GHG production from TOC-poor mineral deposits, which are widespread throughout the Arctic, can be substantial. Therefore, our novel data are relevant for vast ice-rich permafrost deposits vulnerable to thermokarst formation.


Assuntos
Gases de Efeito Estufa , Lagos , Regiões Árticas , Biomarcadores , Lipídeos , Metano/análise , Federação Russa , Sibéria
9.
Permafr Periglac Process ; 31(1): 110-127, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32194312

RESUMO

Arctic lakes located in permafrost regions are susceptible to catastrophic drainage. In this study, we reconstructed historical lake drainage events on the western Arctic Coastal Plain of Alaska between 1955 and 2017 using USGS topographic maps, historical aerial photography (1955), and Landsat Imagery (ca. 1975, ca. 2000, and annually since 2000). We identified 98 lakes larger than 10 ha that partially (>25% of area) or completely drained during the 62-year period. Decadal-scale lake drainage rates progressively declined from 2.0 lakes/yr (1955-1975), to 1.6 lakes/yr (1975-2000), and to 1.2 lakes/yr (2000-2017) in the ~30,000-km2 study area. Detailed Landsat trend analysis between 2000 and 2017 identified two years, 2004 and 2006, with a cluster (five or more) of lake drainages probably associated with bank overtopping or headward erosion. To identify future potential lake drainages, we combined the historical lake drainage observations with a geospatial dataset describing lake elevation, hydrologic connectivity, and adjacent lake margin topographic gradients developed with a 5-m-resolution digital surface model. We identified ~1900 lakes likely to be prone to drainage in the future. Of the 20 lakes that drained in the most recent study period, 85% were identified in this future lake drainage potential dataset. Our assessment of historical lake drainage magnitude, mechanisms and pathways, and identification of potential future lake drainages provides insights into how arctic lowland landscapes may change and evolve in the coming decades to centuries.

10.
J Geophys Res Earth Surf ; 124(4): 920-937, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31423408

RESUMO

Thawing of subsea permafrost can impact offshore infrastructure, affect coastal erosion, and release permafrost organic matter. Thawing is usually modeled as the result of heat transfer, although salt diffusion may play an important role in marine settings. To better quantify nearshore subsea permafrost thawing, we applied the CryoGRID2 heat diffusion model and coupled it to a salt diffusion model. We simulated coastline retreat and subsea permafrost evolution as it develops through successive stages of a thawing sequence at the Bykovsky Peninsula, Siberia. Sensitivity analyses for seawater salinity were performed to compare the results for the Bykovsky Peninsula with those of typical Arctic seawater. For the Bykovsky Peninsula, the modeled ice-bearing permafrost table (IBPT) for ice-rich sand and an erosion rate of 0.25 m/year was 16.7 m below the seabed 350 m offshore. The model outputs were compared to the IBPT depth estimated from coastline retreat and electrical resistivity surveys perpendicular to and crossing the shoreline of the Bykovsky Peninsula. The interpreted geoelectric data suggest that the IBPT dipped to 15-20 m below the seabed at 350 m offshore. Both results suggest that cold saline water forms beneath grounded ice and floating sea ice in shallow water, causing cryotic benthic temperatures. The freezing point depression produced by salt diffusion can delay or prevent ice formation in the sediment and enhance the IBPT degradation rate. Therefore, salt diffusion may facilitate the release of greenhouse gasses to the atmosphere and considerably affect the design of offshore and coastal infrastructure in subsea permafrost areas.

11.
J Geophys Res Biogeosci ; 124(5): 1230-1247, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31341754

RESUMO

Thermokarst lake landscapes are permafrost regions, which are prone to rapid (on seasonal to decadal time scales) changes, affecting carbon and nitrogen cycles. However, there is a high degree of uncertainty related to the balance between carbon and nitrogen cycling and storage. We collected 12 permafrost soil cores from six drained thermokarst lake basins (DTLBs) along a chronosequence north of Teshekpuk Lake in northern Alaska and analyzed them for carbon and nitrogen contents. For comparison, we included three lacustrine cores from an adjacent thermokarst lake and one soil core from a non thermokarst affected remnant upland. This allowed to calculate the carbon and nitrogen stocks of the three primary landscape units (DTLB, lake, and upland), to reconstruct the landscape history, and to analyze the effect of thermokarst lake formation and drainage on carbon and nitrogen stocks. We show that carbon and nitrogen contents and the carbon-nitrogen ratio are considerably lower in sediments of extant lakes than in the DTLB or upland cores indicating degradation of carbon during thermokarst lake formation. However, we found similar amounts of total carbon and nitrogen stocks due to the higher density of lacustrine sediments caused by the lack of ground ice compared to DTLB sediments. In addition, the radiocarbon-based landscape chronology for the past 7,000 years reveals five successive lake stages of partially, spatially overlapping DTLBs in the study region, reflecting the dynamic nature of ice-rich permafrost deposits. With this study, we highlight the importance to include these dynamic landscapes in future permafrost carbon feedback models.

13.
Proc Natl Acad Sci U S A ; 116(11): 4822-4827, 2019 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-30804186

RESUMO

Glacial-interglacial variations in CO2 and methane in polar ice cores have been attributed, in part, to changes in global wetland extent, but the wetland distribution before the Last Glacial Maximum (LGM, 21 ka to 18 ka) remains virtually unknown. We present a study of global peatland extent and carbon (C) stocks through the last glacial cycle (130 ka to present) using a newly compiled database of 1,063 detailed stratigraphic records of peat deposits buried by mineral sediments, as well as a global peatland model. Quantitative agreement between modeling and observations shows extensive peat accumulation before the LGM in northern latitudes (>40°N), particularly during warmer periods including the last interglacial (130 ka to 116 ka, MIS 5e) and the interstadial (57 ka to 29 ka, MIS 3). During cooling periods of glacial advance and permafrost formation, the burial of northern peatlands by glaciers and mineral sediments decreased active peatland extent, thickness, and modeled C stocks by 70 to 90% from warmer times. Tropical peatland extent and C stocks show little temporal variation throughout the study period. While the increased burial of northern peats was correlated with cooling periods, the burial of tropical peat was predominately driven by changes in sea level and regional hydrology. Peat burial by mineral sediments represents a mechanism for long-term terrestrial C storage in the Earth system. These results show that northern peatlands accumulate significant C stocks during warmer times, indicating their potential for C sequestration during the warming Anthropocene.

14.
Nat Commun ; 10(1): 264, 2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651568

RESUMO

Permafrost warming has the potential to amplify global climate change, because when frozen sediments thaw it unlocks soil organic carbon. Yet to date, no globally consistent assessment of permafrost temperature change has been compiled. Here we use a global data set of permafrost temperature time series from the Global Terrestrial Network for Permafrost to evaluate temperature change across permafrost regions for the period since the International Polar Year (2007-2009). During the reference decade between 2007 and 2016, ground temperature near the depth of zero annual amplitude in the continuous permafrost zone increased by 0.39 ± 0.15 °C. Over the same period, discontinuous permafrost warmed by 0.20 ± 0.10 °C. Permafrost in mountains warmed by 0.19 ± 0.05 °C and in Antarctica by 0.37 ± 0.10 °C. Globally, permafrost temperature increased by 0.29 ± 0.12 °C. The observed trend follows the Arctic amplification of air temperature increase in the Northern Hemisphere. In the discontinuous zone, however, ground warming occurred due to increased snow thickness while air temperature remained statistically unchanged.

15.
Nat Commun ; 9(1): 3262, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30111815

RESUMO

Permafrost carbon feedback (PCF) modeling has focused on gradual thaw of near-surface permafrost leading to enhanced carbon dioxide and methane emissions that accelerate global climate warming. These state-of-the-art land models have yet to incorporate deeper, abrupt thaw in the PCF. Here we use model data, supported by field observations, radiocarbon dating, and remote sensing, to show that methane and carbon dioxide emissions from abrupt thaw beneath thermokarst lakes will more than double radiative forcing from circumpolar permafrost-soil carbon fluxes this century. Abrupt thaw lake emissions are similar under moderate and high representative concentration pathways (RCP4.5 and RCP8.5), but their relative contribution to the PCF is much larger under the moderate warming scenario. Abrupt thaw accelerates mobilization of deeply frozen, ancient carbon, increasing 14C-depleted permafrost soil carbon emissions by ~125-190% compared to gradual thaw alone. These findings demonstrate the need to incorporate abrupt thaw processes in earth system models for more comprehensive projection of the PCF this century.


Assuntos
Carbono/química , Congelamento , Lagos/química , Pergelissolo/química , Solo/química , Alaska , Ciclo do Carbono , Dióxido de Carbono/química , Conservação dos Recursos Naturais/métodos , Conservação dos Recursos Naturais/tendências , Geografia , Sedimentos Geológicos/química , Aquecimento Global , Metano/química , Modelos Teóricos
16.
Glob Chang Biol ; 24(10): 4478-4488, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29845698

RESUMO

Increasing air temperatures are changing the arctic tundra biome. Permafrost is thawing, snow duration is decreasing, shrub vegetation is proliferating, and boreal wildlife is encroaching. Here we present evidence of the recent range expansion of North American beaver (Castor canadensis) into the Arctic, and consider how this ecosystem engineer might reshape the landscape, biodiversity, and ecosystem processes. We developed a remote sensing approach that maps formation and disappearance of ponds associated with beaver activity. Since 1999, 56 new beaver pond complexes were identified, indicating that beavers are colonizing a predominantly tundra region (18,293 km2 ) of northwest Alaska. It is unclear how improved tundra stream habitat, population rebound following overtrapping for furs, or other factors are contributing to beaver range expansion. We discuss rates and likely routes of tundra beaver colonization, as well as effects on permafrost, stream ice regimes, and freshwater and riparian habitat. Beaver ponds and associated hydrologic changes are thawing permafrost. Pond formation increases winter water temperatures in the pond and downstream, likely creating new and more varied aquatic habitat, but specific biological implications are unknown. Beavers create dynamic wetlands and are agents of disturbance that may enhance ecosystem responses to warming in the Arctic.


Assuntos
Roedores/fisiologia , Alaska , Animais , Regiões Árticas , Biodiversidade , Ecossistema , Estações do Ano , Neve , Temperatura , Tundra
17.
Sci Data ; 5: 180058, 2018 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-29633984

RESUMO

Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

18.
Sci Rep ; 8(1): 2345, 2018 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-29402988

RESUMO

Arctic tundra ecosystems have experienced unprecedented change associated with climate warming over recent decades. Across the Pan-Arctic, vegetation productivity and surface greenness have trended positively over the period of satellite observation. However, since 2011 these trends have slowed considerably, showing signs of browning in many regions. It is unclear what factors are driving this change and which regions/landforms will be most sensitive to future browning. Here we provide evidence linking decadal patterns in arctic greening and browning with regional climate change and local permafrost-driven landscape heterogeneity. We analyzed the spatial variability of decadal-scale trends in surface greenness across the Arctic Coastal Plain of northern Alaska (~60,000 km²) using the Landsat archive (1999-2014), in combination with novel 30 m classifications of polygonal tundra and regional watersheds, finding landscape heterogeneity and regional climate change to be the most important factors controlling historical greenness trends. Browning was linked to increased temperature and precipitation, with the exception of young landforms (developed following lake drainage), which will likely continue to green. Spatiotemporal model forecasting suggests carbon uptake potential to be reduced in response to warmer and/or wetter climatic conditions, potentially increasing the net loss of carbon to the atmosphere, at a greater degree than previously expected.

19.
Arktos ; 4(1): 1-18, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-33195796

RESUMO

Arctic river deltas are highly dynamic environments in the northern circumpolar permafrost region that are affected by fluvial, coastal, and permafrost-thaw processes. They are characterized by thick sediment deposits containing large but poorly constrained amounts of frozen organic carbon and nitrogen. This study presents new data on soil organic carbon and nitrogen storage as well as accumulation rates from the Ikpikpuk and Fish Creek river deltas, two small, permafrost-dominated Arctic river deltas on the Arctic Coastal Plain of northern Alaska. A soil organic carbon storage of 42.4 ± 1.6 and 37.9 ± 3.5 kg C m- 2 and soil nitrogen storage of 2.1 ± 0.1 and 2.0 ± 0.2 kg N m- 2 was found for the first 2 m of soil for the Ikpikpuk and Fish Creek river delta, respectively. While the upper meter of soil contains 3.57 Tg C, substantial amounts of carbon (3.09 Tg C or 46%) are also stored within the second meter of soil (100-200 cm) in the two deltas. An increasing and inhomogeneous distribution of C with depth is indicative of the dominance of deltaic depositional rather than soil forming processes for soil organic carbon storage. Largely, mid- to late Holocene radiocarbon dates in our cores suggest different carbon accumulation rates for the two deltas for the last 2000 years. Rates up to 28 g C m- 2 year- 1 for the Ikpikpuk river delta are about twice as high as for the Fish Creek river delta. With this study, we highlight the importance of including these highly dynamic permafrost environments in future permafrost carbon estimations.

20.
Ambio ; 46(7): 769-786, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28343340

RESUMO

Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.


Assuntos
Mudança Climática , Bases de Dados Factuais , Tomada de Decisões , Alaska , Animais , Regiões Árticas , Clima , Lagos , Petróleo , Abastecimento de Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...