Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 22(22): 18185-96, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26178827

RESUMO

During the European Life+ project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), photocatalytic remediation of nitrogen oxides (NOx), ozone (O3), volatile organic compounds (VOCs), and airborne particles on photocatalytic cementitious coating materials was studied in an artificial street canyon setup by comparing with a colocated nonactive reference canyon of the same dimension (5 × 5 × 53 m). Although the photocatalytic material showed reasonably high activity in laboratory studies, no significant reduction of NOx, O3, and VOCs and no impact on particle mass, size distribution, and chemical composition were observed in the field campaign. When comparing nighttime and daytime correlation plots of the two canyons, an average upper limit NOx remediation of ≤2% was derived. This result is consistent only with three recent field studies on photocatalytic NOx remediation in the urban atmosphere, whereas much higher reductions were obtained in most other field investigations. Reasons for the controversial results are discussed, and a more consistent picture of the quantitative remediation is obtained after extrapolation of the results from the various field campaigns to realistic main urban street canyon conditions.


Assuntos
Poluentes Atmosféricos/análise , Monitoramento Ambiental , Modelos Teóricos , Processos Fotoquímicos , Óxidos de Nitrogênio/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise
2.
J Environ Manage ; 155: 136-44, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25863437

RESUMO

Within the framework of the European Life+-funded project PhotoPAQ (Demonstration of Photocatalytic remediation Processes on Air Quality), which was aimed at demonstrating the effectiveness of photocatalytic coating materials on a realistic scale, a photocatalytic de-polluting field site was set up in the Leopold II tunnel in Brussels, Belgium. For that purpose, photocatalytic cementitious materials were applied on the side walls and ceiling of selected test sections inside a one-way tunnel tube. This article presents the configuration of the test sections used and the preparation and implementation of the measuring campaigns inside the Leopold II tunnel. While emphasizing on how to implement measuring campaigns under such conditions, difficulties encountered during these extensive field campaigns are presented and discussed. This included the severe de-activation observed for the investigated material under the polluted tunnel conditions, which was revealed by additional laboratory experiments on photocatalytic samples that were exposed to tunnel air. Finally, recommendations for future applications of photocatalytic building materials inside tunnels are given.


Assuntos
Poluentes Atmosféricos/química , Poluição do Ar/prevenção & controle , Catálise , Emissões de Veículos , Bélgica , Materiais de Construção , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA