Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 274(Pt 1): 133291, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38908625

RESUMO

Understanding how shear affects whey protein stability is crucial to deal with typical industrial issues occurring at the bulk solution/surface interface, such as fouling during heat treatments. However, at the state of the art, this effect remains unclear, contrary to that of temperature. This article presents a novel strategy to study the impact of shear rate and concentration on the accumulation of whey protein surficial deposits. It consists in applying a range of shear rates (0-200 s-1) at controlled temperature (65 °C) on whey protein solutions (5-10 wt%) by a parallel plate rheometer equipped with a glass disc, thus allowing the off-line characterization of the deposits by microscopy. Our results highlight an unequivocal effect of increasing shear stress. At 5 wt%, it fosters the formation of primary deposits (≈ 10 µm), whereas at 10 wt% it results in the development of complex branched structures (≈ 50 µm) especially for shear rates ranging from 140 s-1 to 200 s-1. Based on the classification by size of the observed populations, we discuss possible hypotheses for the deposit growth kinetics, involving the interplay of different physico-chemical protein-surface interactions and paving the way to future further investigations.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...