Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Mol Psychiatry ; 26(2): 666-681, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-30953002

RESUMO

Mutations in AUTS2 are associated with autism, intellectual disability, and microcephaly. AUTS2 is expressed in the brain and interacts with polycomb proteins, yet it is still unclear how mutations in AUTS2 lead to neurodevelopmental phenotypes. Here we report that when neuronal differentiation is initiated, there is a shift in expression from a long isoform to a short AUTS2 isoform. Yeast two-hybrid screen identified the splicing factor SF3B1 as an interactor of both isoforms, whereas the polycomb group proteins, PCGF3 and PCGF5, were found to interact exclusively with the long AUTS2 isoform. Reporter assays showed that the first exons of the long AUTS2 isoform function as a transcription repressor, but the part that consist of the short isoform acts as a transcriptional activator, both influenced by the cellular context. The expression levels of PCGF3 influenced the ability of the long AUTS2 isoform to activate or repress transcription. Mouse embryonic stem cells (mESCs) with heterozygote mutations in Auts2 had an increase in cell death during in vitro corticogenesis, which was significantly rescued by overexpressing the human AUTS2 transcripts. mESCs with a truncated AUTS2 protein (missing exons 12-20) showed premature neuronal differentiation, whereas cells overexpressing AUTS2, especially the long transcript, showed increase in expression of pluripotency markers and delayed differentiation. Taken together, our data suggest that the precise expression of AUTS2 isoforms is essential for regulating transcription and the timing of neuronal differentiation.


Assuntos
Diferenciação Celular , Proteínas do Citoesqueleto , Neurônios/citologia , Fatores de Transcrição , Animais , Éxons , Camundongos , Fenótipo , Isoformas de Proteínas/genética , Fatores de Transcrição/genética
3.
J Neurosci ; 40(44): 8543-8555, 2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-33020214

RESUMO

A rare mutation affecting the Forkhead-box protein P2 (FOXP2) transcription factor causes a severe monogenic speech and language disorder. Mice carrying an identical point mutation to that observed in affected patients (Foxp2+/R552H mice) display motor deficits and impaired synaptic plasticity in the striatum. However, the consequences of the mutation on neuronal function, in particular in the cerebral cortex, remain little studied. Foxp2 is expressed in a subset of Layer VI cortical neurons. Here, we used Ntsr1-EGFP mice to identify Foxp2+ neurons in the mouse auditory cortex ex vivo. We studied the functional impact of the R552H mutation on the morphologic and functional properties of Layer VI cortical neurons from Ntsr1-EGFP; Foxp2+/R552H male and female mice. The complexity of apical, but not basal dendrites was significantly lower in Foxp2+/R552H cortico-thalamic neurons than in control Foxp2+/+ neurons. Excitatory synaptic inputs, but not inhibitory synaptic inputs, were decreased in Foxp2+/R552H mice. In response, homeostatic mechanisms would be expected to increase neuronal gain, i.e., the conversion of a synaptic input into a firing output. However, the intrinsic excitability of Foxp2+ cortical neurons was lower in Foxp2+/R552H neurons. A-type and delayed-rectifier (DR) potassium currents, two putative transcriptional targets of Foxp2, were not affected by the mutation. In contrast, GABAB/GIRK signaling, another presumed target of Foxp2, was increased in mutant neurons. Blocking GIRK channels strongly attenuated the difference in intrinsic excitability between wild-type (WT) and Foxp2+/R552H neurons. Our results reveal a novel role for Foxp2 in the control of neuronal input/output homeostasis.SIGNIFICANCE STATEMENT Mutations of the Forkhead-box protein 2 (FOXP2) gene in humans are the first known monogenic cause of a speech and language disorder. The Foxp2 mutation may directly affect neuronal development and function in neocortex, where Foxp2 is expressed. Brain imaging studies in patients with a heterozygous mutation in FOXP2 showed abnormalities in cortical language-related regions relative to the unaffected members of the same family. However, the role of Foxp2 in neocortical neurons is poorly understood. Using mice with a Foxp2 mutation equivalent to that found in patients, we studied functional modifications in auditory cortex neurons ex vivo We found that mutant neurons exhibit alterations of synaptic input and GABAB/GIRK signaling, reflecting a loss of neuronal homeostasis.


Assuntos
Córtex Cerebral/fisiologia , Fatores de Transcrição Forkhead/genética , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/fisiologia , Neurônios/fisiologia , Receptores de GABA-B/fisiologia , Proteínas Repressoras/genética , Tálamo/fisiologia , Animais , Córtex Cerebral/citologia , Canais de Potássio de Retificação Tardia/fisiologia , Espinhas Dendríticas/fisiologia , Fenômenos Eletrofisiológicos , Potenciais Pós-Sinápticos Excitadores/fisiologia , Feminino , Canais de Potássio Corretores do Fluxo de Internalização Acoplados a Proteínas G/antagonistas & inibidores , Antagonistas GABAérgicos/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação , Vias Neurais/citologia , Vias Neurais/fisiologia , Sinapses/fisiologia , Tálamo/citologia
4.
Dev Biol ; 461(1): 86-95, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31982375

RESUMO

One of the main obstacles for studying the molecular and cellular mechanisms underlying human neurodevelopment in vivo is the scarcity of experimental models. The discovery that neurons can be generated from human induced pluripotent stem cells (hiPSCs) paves the way for novel approaches that are stem cell-based. Here, we developed a technique to follow the development of transplanted hiPSC-derived neuronal precursors in the cortex of mice over time. Using post-mortem immunohistochemistry we quantified the differentiation and maturation of dendritic patterns of the human neurons over a total of six months. In addition, entirely hiPSC-derived neuronal parenchyma was followed over eight months using two-photon in vivo imaging through a cranial window. We found that transplanted hiPSC-derived neuronal precursors exhibit a "protracted" human developmental programme in different cortical areas. This offers novel possibilities for the sequential in vivo study of human cortical development and its alteration, followed in "real time".


Assuntos
Células-Tronco Pluripotentes Induzidas/transplante , Córtex Motor/embriologia , Neurogênese/fisiologia , Células Piramidais/transplante , Animais , Encéfalo/embriologia , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Córtex Motor/citologia , Células Piramidais/citologia , Transplante Heterólogo
5.
Nat Commun ; 10(1): 3946, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477701

RESUMO

Cerebral cortex expansion is a hallmark of mammalian brain evolution; yet, how increased neurogenesis is coordinated with structural and functional development remains largely unclear. The T-box protein TBR2/EOMES is preferentially enriched in intermediate progenitors and supports cortical neurogenesis expansion. Here we show that TBR2 regulates fine-scale spatial and circuit organization of excitatory neurons in addition to enhancing neurogenesis in the mouse cortex. TBR2 removal leads to a significant reduction in neuronal, but not glial, output of individual radial glial progenitors as revealed by mosaic analysis with double markers. Moreover, in the absence of TBR2, clonally related excitatory neurons become more laterally dispersed and their preferential synapse development is impaired. Interestingly, TBR2 directly regulates the expression of Protocadherin 19 (PCDH19), and simultaneous PCDH19 expression rescues neurogenesis and neuronal organization defects caused by TBR2 removal. Together, these results suggest that TBR2 coordinates neurogenesis expansion and precise microcircuit assembly via PCDH19 in the mammalian cortex.


Assuntos
Caderinas/genética , Córtex Cerebral/metabolismo , Neurogênese/genética , Neurônios/metabolismo , Proteínas com Domínio T/genética , Animais , Caderinas/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica no Desenvolvimento , Células HEK293 , Humanos , Camundongos Knockout , Camundongos Transgênicos , Protocaderinas , Interferência de RNA , Sinapses/metabolismo , Proteínas com Domínio T/metabolismo
6.
J Clin Invest ; 129(5): 2145-2162, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30985297

RESUMO

Vacuolar H+-ATPase-dependent (V-ATPase-dependent) functions are critical for neural proteostasis and are involved in neurodegeneration and brain tumorigenesis. We identified a patient with fulminant neurodegeneration of the developing brain carrying a de novo splice site variant in ATP6AP2 encoding an accessory protein of the V-ATPase. Functional studies of induced pluripotent stem cell-derived (iPSC-derived) neurons from this patient revealed reduced spontaneous activity and severe deficiency in lysosomal acidification and protein degradation leading to neuronal cell death. These deficiencies could be rescued by expression of full-length ATP6AP2. Conditional deletion of Atp6ap2 in developing mouse brain impaired V-ATPase-dependent functions, causing impaired neural stem cell self-renewal, premature neuronal differentiation, and apoptosis resulting in degeneration of nearly the entire cortex. In vitro studies revealed that ATP6AP2 deficiency decreases V-ATPase membrane assembly and increases endosomal-lysosomal fusion. We conclude that ATP6AP2 is a key mediator of V-ATPase-dependent signaling and protein degradation in the developing human central nervous system.


Assuntos
Sistema Nervoso Central/fisiopatologia , Doenças Neurodegenerativas/diagnóstico por imagem , Doenças Neurodegenerativas/genética , Células-Tronco Pluripotentes/metabolismo , Receptores de Superfície Celular/genética , ATPases Vacuolares Próton-Translocadoras/genética , Adolescente , Processamento Alternativo , Animais , Apoptose , Encéfalo/diagnóstico por imagem , Morte Celular , Diferenciação Celular , Sobrevivência Celular , Pré-Escolar , Deleção de Genes , Variação Genética , Células HEK293 , Células HeLa , Humanos , Lisossomos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , ATPases Translocadoras de Prótons/genética , ATPases Translocadoras de Prótons/fisiologia , Receptores de Superfície Celular/fisiologia , ATPases Vacuolares Próton-Translocadoras/fisiologia
7.
Hum Mol Genet ; 28(5): 701-717, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30357341

RESUMO

Genetic disruptions of the forkhead box transcription factor FOXP2 in humans cause an autosomal-dominant speech and language disorder. While FOXP2 expression pattern are highly conserved, its role in specific brain areas for mammalian social behaviors remains largely unknown. Here we studied mice carrying a homozygous cortical Foxp2 deletion. The postnatal development and gross morphological architecture of mutant mice was indistinguishable from wildtype (WT) littermates. Unbiased behavioral profiling of adult mice revealed abnormalities in approach behavior towards conspecifics as well as in the reciprocal responses of WT interaction partners. Furthermore mutant mice showed alterations in acoustical parameters of ultrasonic vocalizations, which also differed in function of the social context. Cell type-specific gene expression profiling of cortical pyramidal neurons revealed aberrant regulation of genes involved in social behavior. In particular Foxp2 mutants showed the downregulation of Mint2 (Apba2), a gene involved in approach behavior in mice and autism spectrum disorder in humans. Taken together these data demonstrate that cortical Foxp2 is required for normal social behaviors in mice.


Assuntos
Comportamento Animal , Córtex Cerebral/metabolismo , Córtex Cerebral/fisiopatologia , Fatores de Transcrição Forkhead/deficiência , Deleção de Genes , Proteínas Repressoras/deficiência , Comportamento Social , Animais , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/patologia , Homozigoto , Camundongos , Camundongos Knockout , Neurônios/metabolismo
8.
J Neurosci ; 35(31): 10911-26, 2015 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-26245956

RESUMO

Neocortical development requires tightly controlled spatiotemporal gene expression. However, the mechanisms regulating ribosomal complexes and the timed specificity of neocortical mRNA translation are poorly understood. We show that active mRNA translation complexes (polysomes) contain ribosomal protein subsets that undergo dynamic spatiotemporal rearrangements during mouse neocortical development. Ribosomal protein specificity within polysome complexes is regulated by the arrival of in-growing thalamic axons, which secrete the morphogen Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3). Thalamic WNT3 release during midneurogenesis promotes a change in the levels of Ribosomal protein L7 in polysomes, thereby regulating neocortical translation machinery specificity. Furthermore, we present an RNA sequencing dataset analyzing mRNAs that dynamically associate with polysome complexes as neocortical development progresses, and thus may be regulated spatiotemporally at the level of translation. Thalamic WNT3 regulates neocortical translation of two such mRNAs, Foxp2 and Apc, to promote FOXP2 expression while inhibiting APC expression, thereby driving neocortical neuronal differentiation and suppressing oligodendrocyte maturation, respectively. This mechanism may enable targeted and rapid spatiotemporal control of ribosome composition and selective mRNA translation in complex developing systems like the neocortex. SIGNIFICANCE STATEMENT: The neocortex is a highly complex circuit generating the most evolutionarily advanced complex cognitive and sensorimotor functions. An intricate progression of molecular and cellular steps during neocortical development determines its structure and function. Our goal is to study the steps regulating spatiotemporal specificity of mRNA translation that govern neocortical development. In this work, we show that the timed secretion of Wingless-related MMTV (mouse mammary tumor virus) integration site 3 (WNT3) by ingrowing axons from the thalamus regulates the combinatorial composition of ribosomal proteins in developing neocortex, which we term the "neocortical ribosome signature." Thalamic WNT3 further regulates the specificity of mRNA translation and development of neurons and oligodendrocytes in the neocortex. This study advances our overall understanding of WNT signaling and the spatiotemporal regulation of mRNA translation in highly complex developing systems.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Neocórtex/citologia , Neurogênese/fisiologia , Biossíntese de Proteínas , Ribossomos/metabolismo , Tálamo/metabolismo , Proteína Wnt3/metabolismo , Animais , Axônios/metabolismo , Camundongos , Neocórtex/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Oligodendroglia/citologia , Oligodendroglia/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribossomos/genética
9.
Proc Natl Acad Sci U S A ; 111(39): 14253-8, 2014 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-25225386

RESUMO

The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2(hum)), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2(hum/hum) mice learn stimulus-response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2(hum/hum) mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.


Assuntos
Fatores de Transcrição Forkhead/fisiologia , Aprendizagem/fisiologia , Substituição de Aminoácidos , Animais , Corpo Estriado/fisiologia , Dopamina/metabolismo , Feminino , Fatores de Transcrição Forkhead/química , Fatores de Transcrição Forkhead/genética , Humanos , Depressão Sináptica de Longo Prazo , Masculino , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Destreza Motora/fisiologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/química , Proteínas Repressoras/genética , Proteínas Repressoras/fisiologia , Especificidade da Espécie , Transcriptoma
10.
Cell Rep ; 7(6): 1779-88, 2014 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-24931612

RESUMO

Over the course of cortical neurogenesis, the transition of progenitors from proliferation to differentiation requires a precise regulation of involved gene networks under varying environmental conditions. In order to identify such regulatory mechanisms, we analyzed microRNA (miRNA) target networks in progenitors during early and late stages of neurogenesis. We found that cyclin D1 is a network hub whose expression is miRNA-dosage sensitive. Experimental validation revealed a feedback regulation between cyclin D1 and its regulating miRNAs miR-20a, miR-20b, and miR-23a. Cyclin D1 induces expression of miR-20a and miR-20b, whereas it represses miR-23a. Inhibition of any of these miRNAs increases the developmental stage-specific mean and dynamic expression range (variance) of cyclin D1 protein in progenitors, leading to reduced neuronal differentiation. Thus, miRNAs establish robustness and stage-specific adaptability to a critical dosage-sensitive gene network during cortical neurogenesis. Understanding such network regulatory mechanisms for key developmental events can provide insights into individual susceptibilities for genetically complex neuropsychiatric disorders.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Neurogênese/genética , Células-Tronco/citologia , Animais , Diferenciação Celular/genética , Humanos , Camundongos , Camundongos Transgênicos
11.
EMBO J ; 32(24): 3145-60, 2013 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-24240175

RESUMO

Transcriptome analysis of somatic stem cells and their progeny is fundamental to identify new factors controlling proliferation versus differentiation during tissue formation. Here, we generated a combinatorial, fluorescent reporter mouse line to isolate proliferating neural stem cells, differentiating progenitors and newborn neurons that coexist as intermingled cell populations during brain development. Transcriptome sequencing revealed numerous novel long non-coding (lnc)RNAs and uncharacterized protein-coding transcripts identifying the signature of neurogenic commitment. Importantly, most lncRNAs overlapped neurogenic genes and shared with them a nearly identical expression pattern suggesting that lncRNAs control corticogenesis by tuning the expression of nearby cell fate determinants. We assessed the power of our approach by manipulating lncRNAs and protein-coding transcripts with no function in corticogenesis reported to date. This led to several evident phenotypes in neurogenic commitment and neuronal survival, indicating that our study provides a remarkably high number of uncharacterized transcripts with hitherto unsuspected roles in brain development. Finally, we focussed on one lncRNA, Miat, whose manipulation was found to trigger pleiotropic effects on brain development and aberrant splicing of Wnt7b. Hence, our study suggests that lncRNA-mediated alternative splicing of cell fate determinants controls stem-cell commitment during neurogenesis.


Assuntos
Encéfalo/embriologia , Perfilação da Expressão Gênica/métodos , Células-Tronco Neurais/fisiologia , RNA Longo não Codificante/genética , Processamento Alternativo , Animais , Encéfalo/citologia , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Regulação da Expressão Gênica no Desenvolvimento , Proteínas de Fluorescência Verde/genética , Camundongos , Camundongos Transgênicos , Neurogênese , Neurônios , Fenótipo , Proteínas/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Wnt/genética
12.
EMBO Mol Med ; 4(6): 486-99, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22488882

RESUMO

'Tomacula' and myelin outfoldings are striking neuropathological features of a diverse group of inherited demyelinating neuropathies. Whereas the underlying genetic defects are well known, the molecular mechanisms of tomacula formation have remained obscure. We hypothesized that they are caused by uncontrolled, excessive myelin membrane growth, a process, which is regulated in normal development by neuregulin-1/ErbB2, PI3 Kinase signalling and ERK/MAPK signalling. Here, we demonstrate by targeted disruption of Pten in Schwann cells that hyperactivation of the endogenous PI3 Kinase pathway causes focal hypermyelination, myelin outfoldings and tomacula, even when induced in adult animals by tamoxifen, and is associated with progressive peripheral neuropathy. Activated AKT kinase is associated with PtdIns(3,4,5)P(3) at paranodal loops and Schmidt-Lanterman incisures. This striking myelin pathology, with features of human CMT type 4B1 and HNPP, is dependent on AKT/mTOR signalling, as evidenced by a significant amelioration of the pathology in mice treated with rapamycin. We suggest that regions of non-compact myelin are under lifelong protection by PTEN against abnormal membrane outgrowth, and that dysregulated phosphoinositide levels play a critical role in the pathology of tomaculous neuropathies.


Assuntos
Artrogripose/patologia , Técnicas de Inativação de Genes , Neuropatia Hereditária Motora e Sensorial/patologia , Bainha de Mielina/patologia , PTEN Fosfo-Hidrolase/deficiência , Animais , Linhagem Celular , Modelos Animais de Doenças , Camundongos , Células de Schwann/química , Células de Schwann/citologia
13.
PLoS Genet ; 7(7): e1002145, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21765815

RESUMO

Forkhead-box protein P2 is a transcription factor that has been associated with intriguing aspects of cognitive function in humans, non-human mammals, and song-learning birds. Heterozygous mutations of the human FOXP2 gene cause a monogenic speech and language disorder. Reduced functional dosage of the mouse version (Foxp2) causes deficient cortico-striatal synaptic plasticity and impairs motor-skill learning. Moreover, the songbird orthologue appears critically important for vocal learning. Across diverse vertebrate species, this well-conserved transcription factor is highly expressed in the developing and adult central nervous system. Very little is known about the mechanisms regulated by Foxp2 during brain development. We used an integrated functional genomics strategy to robustly define Foxp2-dependent pathways, both direct and indirect targets, in the embryonic brain. Specifically, we performed genome-wide in vivo ChIP-chip screens for Foxp2-binding and thereby identified a set of 264 high-confidence neural targets under strict, empirically derived significance thresholds. The findings, coupled to expression profiling and in situ hybridization of brain tissue from wild-type and mutant mouse embryos, strongly highlighted gene networks linked to neurite development. We followed up our genomics data with functional experiments, showing that Foxp2 impacts on neurite outgrowth in primary neurons and in neuronal cell models. Our data indicate that Foxp2 modulates neuronal network formation, by directly and indirectly regulating mRNAs involved in the development and plasticity of neuronal connections.


Assuntos
Encéfalo/embriologia , Fatores de Transcrição Forkhead/genética , Redes Reguladoras de Genes , Neuritos/metabolismo , Proteínas Repressoras/genética , Animais , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Corpo Estriado/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos C57BL , Modelos Biológicos , Mutação , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Cultura Primária de Células , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
14.
J Neurosci ; 30(26): 8953-64, 2010 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-20592216

RESUMO

In the developing nervous system, constitutive activation of the AKT/mTOR (mammalian target of rapamycin) pathway in myelinating glial cells is associated with hypermyelination of the brain, but is reportedly insufficient to drive myelination by Schwann cells. We have hypothesized that it requires additional mechanisms downstream of NRG1/ErbB signaling to trigger myelination in the peripheral nervous system. Here, we demonstrate that elevated levels of phosphatidylinositol 3,4,5-trisphosphate (PIP3) have developmental effects on both oligodendrocytes and Schwann cells. By generating conditional mouse mutants, we found that Pten-deficient Schwann cells are enhanced in number and can sort and myelinate axons with calibers well below 1 microm. Unexpectedly, mutant glial cells also spirally enwrap C-fiber axons within Remak bundles and even collagen fibrils, which lack any membrane surface. Importantly, PIP3-dependent hypermyelination of central axons, which is observed when targeting Pten in oligodendrocytes, can also be induced after tamoxifen-mediated Cre recombination in adult mice. We conclude that it requires distinct PIP3 effector mechanisms to trigger axonal wrapping. That myelin synthesis is not restricted to early development but can occur later in life is relevant to developmental disorders and myelin disease.


Assuntos
Bainha de Mielina/fisiologia , Oligodendroglia/fisiologia , Fosfatos de Fosfatidilinositol/metabolismo , Células de Schwann/fisiologia , Envelhecimento , Animais , Axônios/fisiologia , Axônios/ultraestrutura , Encéfalo/fisiologia , Encéfalo/ultraestrutura , Contagem de Células , Colágeno/metabolismo , Camundongos , Camundongos Transgênicos , Bainha de Mielina/ultraestrutura , Fibras Nervosas Mielinizadas/fisiologia , Fibras Nervosas Mielinizadas/ultraestrutura , Neuroglia/fisiologia , Neuroglia/ultraestrutura , Oligodendroglia/ultraestrutura , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Células de Schwann/ultraestrutura , Nervo Isquiático/fisiologia , Nervo Isquiático/ultraestrutura
15.
Genesis ; 47(11): 775-81, 2009 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-19830823

RESUMO

During mouse embryonic development, the T-box transcription factor Eomes/Tbr2 is expressed in highly dynamic patterns in various progenitor cell types. Those include the undifferentiated cells of the trophectoderm, ingressing nascent mesoderm at the primitive streak, and intermediate progenitor cells of the developing cerebral cortex. We generated an Eomes(GFP)- targeted allele to follow the highly dynamic patterns of Eomes expression and to allow for the identification of novel expression domains. We show that our novel allele recapitulates endogenous gene expression at known sites of expression and confirm our results by anti-Eomes immunofluorescent staining. Using this novel allele we were able to identify previously undocumented domains of Eomes expression within the visceral endoderm and at various locations in the developing and adult mouse brain.


Assuntos
Proteínas de Fluorescência Verde/genética , Proteínas com Domínio T/genética , Alelos , Animais , Sequência de Bases , Primers do DNA , Genes Reporter , Hibridização In Situ , Camundongos
16.
Brain Res ; 1289: 30-6, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19596273

RESUMO

Heterozygous mutations of the human FOXP2 gene cause a developmental disorder involving impaired learning and production of fluent spoken language. Previous investigations of its aetiology have focused on disturbed function of neural circuits involved in motor control. However, Foxp2 expression has been found in the cochlea and auditory brain centers and deficits in auditory processing could contribute to difficulties in speech learning and production. Here, we recorded auditory brainstem responses (ABR) to assess two heterozygous mouse models carrying distinct Foxp2 point mutations matching those found in humans with FOXP2-related speech/language impairment. Mice which carry a Foxp2-S321X nonsense mutation, yielding reduced dosage of Foxp2 protein, did not show systematic ABR differences from wildtype littermates. Given that speech/language disorders are observed in heterozygous humans with similar nonsense mutations (FOXP2-R328X), our findings suggest that auditory processing deficits up to the midbrain level are not causative for FOXP2-related language impairments. Interestingly, however, mice harboring a Foxp2-R552H missense mutation displayed systematic alterations in ABR waves with longer latencies (significant for waves I, III, IV) and smaller amplitudes (significant for waves I, IV) suggesting that either the synchrony of synaptic transmission in the cochlea and in auditory brainstem centers is affected, or fewer auditory nerve fibers and fewer neurons in auditory brainstem centers are activated compared to wildtypes. Therefore, the R552H mutation uncovers possible roles for Foxp2 in the development and/or function of the auditory system. Since ABR audiometry is easily accessible in humans, our data call for systematic testing of auditory functions in humans with FOXP2 mutations.


Assuntos
Potenciais Evocados Auditivos do Tronco Encefálico/genética , Fatores de Transcrição Forkhead/genética , Proteínas Repressoras/genética , Estimulação Acústica , Animais , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Fatores de Transcrição Forkhead/fisiologia , Heterozigoto , Masculino , Camundongos , Camundongos Knockout , Mutação de Sentido Incorreto , Proteínas Repressoras/fisiologia
17.
Cell ; 137(5): 961-71, 2009 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-19490899

RESUMO

It has been proposed that two amino acid substitutions in the transcription factor FOXP2 have been positively selected during human evolution due to effects on aspects of speech and language. Here, we introduce these substitutions into the endogenous Foxp2 gene of mice. Although these mice are generally healthy, they have qualitatively different ultrasonic vocalizations, decreased exploratory behavior and decreased dopamine concentrations in the brain suggesting that the humanized Foxp2 allele affects basal ganglia. In the striatum, a part of the basal ganglia affected in humans with a speech deficit due to a nonfunctional FOXP2 allele, we find that medium spiny neurons have increased dendrite lengths and increased synaptic plasticity. Since mice carrying one nonfunctional Foxp2 allele show opposite effects, this suggests that alterations in cortico-basal ganglia circuits might have been important for the evolution of speech and language in humans.


Assuntos
Substituição de Aminoácidos , Gânglios da Base/metabolismo , Evolução Biológica , Fatores de Transcrição Forkhead/metabolismo , Vocalização Animal , Animais , Dendritos/metabolismo , Dopamina/metabolismo , Expressão Gênica , Heterozigoto , Humanos , Idioma , Depressão Sináptica de Longo Prazo , Camundongos , Vias Neurais , Plasticidade Neuronal , Fala
18.
J Neurosci ; 29(6): 1874-86, 2009 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-19211894

RESUMO

Here we show that conditional deletion of Pten in a subpopulation of adult neural stem cells in the subependymal zone (SEZ) leads to persistently enhanced neural stem cell self-renewal without sign of exhaustion. These Pten null SEZ-born neural stem cells and progenies can follow the endogenous migration, differentiation, and integration pathways and contribute to constitutive neurogenesis in the olfactory bulb. As a result, Pten deleted animals have increased olfactory bulb mass and enhanced olfactory function. Pten null cells in the olfactory bulb can establish normal connections with peripheral olfactory epithelium and help olfactory bulb recovery from acute damage. Following a focal stroke, Pten null progenitors give rise to greater numbers of neuroblasts that migrate to peri-infarct cortex. However, in contrast to the olfactory bulb, no significant long-term survival and integration can be observed, indicating that additional factors are necessary for long-term survival of newly born neurons after stroke. These data suggest that manipulating PTEN-controlled signaling pathways may be a useful step in facilitating endogenous neural stem/progenitor expansion for the treatment of disorders or lesions in regions associated with constitutive neurogenesis.


Assuntos
Diferenciação Celular/genética , Deleção de Genes , Neurogênese/genética , Neurônios/fisiologia , PTEN Fosfo-Hidrolase/genética , Células-Tronco/fisiologia , Fatores Etários , Animais , Células Cultivadas , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias do Sistema Nervoso/enzimologia , Neoplasias do Sistema Nervoso/genética , Neurônios/citologia , Neurônios/enzimologia , PTEN Fosfo-Hidrolase/deficiência , PTEN Fosfo-Hidrolase/fisiologia , Transdução de Sinais/genética , Olfato/genética , Células-Tronco/citologia , Células-Tronco/enzimologia
19.
Nat Neurosci ; 12(2): 116-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19151711

RESUMO

Can dendrites grow in mature cortex? We used chronic in vivo imaging to follow pyramidal neurons before and after cortical deletion of the Pten tumor suppressor gene in mature mice. We found that Pten/mTOR signaling uniquely regulates the growth of layer 2/3 apical dendrites; no effects of gene deletion were observed on basal dendrites of these pyramidal neurons or along layer 5 apical dendrites.


Assuntos
Proteínas de Transporte/metabolismo , Córtex Cerebral/citologia , Dendritos/fisiologia , PTEN Fosfo-Hidrolase/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Células Piramidais/fisiologia , Fatores Etários , Animais , Antibióticos Antineoplásicos/farmacologia , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , PTEN Fosfo-Hidrolase/metabolismo , Células Piramidais/ultraestrutura , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Sirolimo/farmacologia , Serina-Treonina Quinases TOR
20.
N Engl J Med ; 359(22): 2337-45, 2008 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-18987363

RESUMO

BACKGROUND: Rare mutations affecting the FOXP2 transcription factor cause a monogenic speech and language disorder. We hypothesized that neural pathways downstream of FOXP2 influence more common phenotypes, such as specific language impairment. METHODS: We performed genomic screening for regions bound by FOXP2 using chromatin immunoprecipitation, which led us to focus on one particular gene that was a strong candidate for involvement in language impairments. We then tested for associations between single-nucleotide polymorphisms (SNPs) in this gene and language deficits in a well-characterized set of 184 families affected with specific language impairment. RESULTS: We found that FOXP2 binds to and dramatically down-regulates CNTNAP2, a gene that encodes a neurexin and is expressed in the developing human cortex. On analyzing CNTNAP2 polymorphisms in children with typical specific language impairment, we detected significant quantitative associations with nonsense-word repetition, a heritable behavioral marker of this disorder (peak association, P=5.0x10(-5) at SNP rs17236239). Intriguingly, this region coincides with one associated with language delays in children with autism. CONCLUSIONS: The FOXP2-CNTNAP2 pathway provides a mechanistic link between clinically distinct syndromes involving disrupted language.


Assuntos
Fatores de Transcrição Forkhead/genética , Regulação da Expressão Gênica , Transtornos do Desenvolvimento da Linguagem/genética , Proteínas de Membrana/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único , Criança , Imunoprecipitação da Cromatina , Regulação para Baixo , Feminino , Fatores de Transcrição Forkhead/metabolismo , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Haplótipos , Humanos , Masculino , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fenótipo , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...