Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(8)2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38675669

RESUMO

Manganese catalysts that activate hydrogen peroxide carry out several different hydrocarbon oxidation reactions with high stereoselectivity. The commonly proposed mechanism for these reactions involves a key manganese(III)-hydroperoxo intermediate, which decays via O-O bond heterolysis to generate a Mn(V)-oxo species that institutes substrate oxidation. Due to the scarcity of characterized MnIII-hydroperoxo complexes, MnIII-alkylperoxo complexes are employed to understand factors that affect the mechanism of the O-O cleavage. Herein, we report a series of novel complexes, including two room-temperature-stable MnIII-alkylperoxo species, supported by a new amide-containing pentadentate ligand (6Medpaq5NO2). We use a combination of spectroscopic methods and density functional theory computations to probe the effects of the electronic changes in the ligand sphere trans to the hydroxo and alkylperoxo units to thermal stability and reactivity. The structural characterizations for both MnII(OTf)(6Medpaq5NO2) and [MnIII(OH)(6Medpaq5NO2)](OTf) were obtained via single-crystal X-ray crystallography. A perturbation to the ligand sphere allowed for a marked increase in reactivity towards an organic substrate, a modest change in the distribution of the O-O cleavage products from homolytic and heterolytic pathways, and little change in thermal stability.

2.
Dalton Trans ; 52(40): 14350-14370, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37767937

RESUMO

Peroxomanganese species have been proposed as key intermediates in the catalytic cycles of both manganese enzymes and synthetic catalysts. However, many of these intermediates have yet to be observed. Here, we report the formation of a series of intermediates, each generated from the reaction of the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq2Me)]+ with hydrogen peroxide under slightly different conditions. By changing the acidity of the reaction mixture and/or the quantity of hydrogen peroxide added, we are able to control which intermediate forms. Using a combination of electronic absorption, 1H NMR, EPR, and X-ray absorption spectroscopies, as well as density functional theory (DFT) and complete active space self-consistent field (CASSCF) calculations, we formulate these intermediates as the bis(µ-oxo)dimanganese(III,IV) complex [MnIIIMnIV(µ-O)2(dpaq2Me)2]+, the MnIII-hydroperoxo complex [MnIII(OOH)(dpaq2Me)]+, and the MnIII-peroxo complex [MnIII(O2)(dpaq2Me)]. The formation of the MnIII-hydroperoxo species from the reaction of a MnIII-hydroxo complex with hydrogen peroxide mimics an elementary reaction proposed for many synthetic manganese catalysts that activate hydrogen peroxide.

3.
Mol Pharm ; 19(11): 4026-4042, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36074094

RESUMO

Citrate is a commonly used buffer in pharmaceutical formulations which forms complexes with adventitious metals such as Fe3+. Fe3+-citrate complexes can act as potent photosensitizers under near-UV and visible light exposure, and recent studies reported evidence for the photo-production of a powerful reductant, carbon dioxide radical anion (•CO2-), from Fe3+-citrate complexes (Subelzu, N.; Schöneich, N., Mol. Pharm. 2020, 17, 4163-4179). The mechanisms of •CO2- formation are currently unknown but must be established to devise strategies against •CO2- formation in pharmaceutical formulations which rely on the use of citrate buffer. In this study, we first established complementary evidence for the photolytic generation of •CO2- from Fe3+-citrate through spin trapping and electron paramagnetic resonance (EPR) spectroscopy, and subsequently used spin trapping in conjunction with tandem mass spectrometry (MS/MS) for mechanistic studies on the pathways of •CO2- formation. Experiments with stable isotope-labeled citrate suggest that the central carboxylate group of citrate is the major source of •CO2-. Competition studies with various inhibitors (alcohols and dimethyl sulfoxide) reveal two mechanisms of •CO2- formation, where one pathway involves ß-cleavage of a sterically hindered alkoxyl radical generated from the hydroxyl group of citrate.


Assuntos
Dióxido de Carbono , Ferro , Ferro/química , Espectrometria de Massas em Tandem , Espectroscopia de Ressonância de Spin Eletrônica , Álcoois , Luz , Ânions , Citratos , Preparações Farmacêuticas , Radicais Livres
4.
Molecules ; 26(23)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34885729

RESUMO

Manganese lipoxygenase (MnLOX) is an enzyme that converts polyunsaturated fatty acids to alkyl hydroperoxides. In proposed mechanisms for this enzyme, the transfer of a hydrogen atom from a substrate C-H bond to an active-site MnIII-hydroxo center initiates substrate oxidation. In some proposed mechanisms, the active-site MnIII-hydroxo complex is regenerated by the reaction of a MnIII-alkylperoxo intermediate with water by a ligand substitution reaction. In a recent study, we described a pair of MnIII-hydroxo and MnIII-alkylperoxo complexes supported by the same amide-containing pentadentate ligand (6Medpaq). In this present work, we describe the reaction of the MnIII-hydroxo unit in C-H and O-H bond oxidation processes, thus mimicking one of the elementary reactions of the MnLOX enzyme. An analysis of kinetic data shows that the MnIII-hydroxo complex [MnIII(OH)(6Medpaq)]+ oxidizes TEMPOH (2,2'-6,6'-tetramethylpiperidine-1-ol) faster than the majority of previously reported MnIII-hydroxo complexes. Using a combination of cyclic voltammetry and electronic structure computations, we demonstrate that the weak MnIII-N(pyridine) bonds lead to a higher MnIII/II reduction potential, increasing the driving force for substrate oxidation reactions and accounting for the faster reaction rate. In addition, we demonstrate that the MnIII-alkylperoxo complex [MnIII(OOtBu)(6Medpaq)]+ reacts with water to obtain the corresponding MnIII-hydroxo species, thus mimicking the ligand substitution step proposed for MnLOX.


Assuntos
Complexos de Coordenação/química , Peróxidos Lipídicos/química , Lipoxigenase/química , Manganês/química , Biomimética , Domínio Catalítico/efeitos dos fármacos , Complexos de Coordenação/farmacologia , Ácidos Graxos Insaturados/química , Ácidos Graxos Insaturados/metabolismo , Hidrogênio/química , Ligantes , Peróxidos Lipídicos/metabolismo , Lipoxigenase/efeitos dos fármacos , Estrutura Molecular , Oxirredução/efeitos dos fármacos , Oxigênio/química , Piperidinas/química , Piperidinas/farmacologia
5.
Chem Commun (Camb) ; 56(65): 9238-9255, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32578605

RESUMO

The enzymes manganese superoxide dismutase and manganese lipoxygenase use MnIII-hydroxo centres to mediate proton-coupled electron transfer (PCET) reactions with substrate. As manganese is earth-abundant and inexpensive, manganese catalysts are of interest for synthetic applications. Recent years have seen exciting reports of enantioselective C-H bond oxidation by Mn catalysts supported by aminopyridyl ligands. Such catalysts offer economic and environmentally-friendly alternatives to conventional reagents and catalysts. Mechanistic studies of synthetic catalysts highlight the role of Mn-oxo motifs in attacking substrate C-H bonds, presumably by a concerted proton-electron transfer (CPET) step. (CPET is a sub-class of PCET, where the proton and electron are transferred in the same step.) Knowledge of geometric and electronic influences for CPET reactions of Mn-hydroxo and Mn-oxo adducts enhances our understanding of biological and synthetic manganese centers and informs the design of new catalysts. In this Feature article, we describe kinetic, spectroscopic, and computational studies of MnIII-hydroxo and MnIV-oxo complexes that provide insight into the basis for the CPET reactivity of these species. Systematic perturbations of the ligand environment around MnIII-hydroxo and MnIV-oxo motifs permit elucidation of structure-activity relationships. For MnIII-hydroxo centers, electron-deficient ligands enhance oxidative reactivity. However, ligand perturbations have competing consequences, as changes in the MnIII/II potential, which represents the electron-transfer component for CPET, is offset by compensating changes in the pKa of the MnII-aqua product, which represents the proton-transfer component for CPET. For MnIV-oxo systems, a multi-state reactivity model inspired the development of significantly more reactive complexes. Weakened equatorial donation to the MnIV-oxo unit results in large rate enhancements for C-H bond oxidation and oxygen-atom transfer reactions. These results demonstrate that the local coordination environment can be rationally changed to enhance reactivity of MnIII-hydroxo and MnIV-oxo adducts.

6.
Inorg Chem ; 59(5): 2689-2700, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-32045220

RESUMO

The addition of Sc(OTf)3 and Al(OTf)3 to the mononuclear MnIII-hydroxo complex [MnIII(OH)(dpaq)]+ (1) gives rise to new intermediates with spectroscopic properties and chemical reactivity distinct from those of [MnIII(OH)(dpaq)]+. The electronic absorption spectra of [MnIII(OH)(dpaq)]+ in the presence of Sc(OTf)3 (1-ScIII) and Al(OTf)3 (1-AlIII) show modest perturbations in electronic transition energies, consistent with moderate changes in the MnIII geometry. A comparison of 1H NMR data for 1 and 1-ScIII confirm this conclusion, as the 1H NMR spectrum of 1-ScIII shows the same number of hyperfine-shifted peaks as the 1H NMR spectrum of 1. These 1H NMR spectra, and that of 1-AlIII, share a similar chemical-shift pattern, providing firm evidence that these Lewis acids do not cause gross distortions to the structure of 1. Mn K-edge X-ray absorption data for 1-ScIII provide evidence of elongation of the axial Mn-OH and Mn-N(amide) bonds relative to those of 1. In contrast to these modest spectroscopic perturbations, 1-ScIII and 1-AlIII show greatly enhanced reactivity toward hydrocarbons. While 1 is unreactive toward 9,10-dihydroanthracene (DHA), 1-ScIII and 1-AlIII react rapidly with DHA (k2 = 0.16(1) and 0.25(2) M-1 s-1 at 50 °C, respectively). The 1-ScIII species is capable of attacking the much stronger C-H bond of ethylbenzene. The basis for these perturbations to the spectroscopic properties and reactivity of 1 in the presence of these Lewis acids was elucidated by comparing properties of 1-ScIII and 1-AlIII with the recently reported MnIII-aqua complex [MnIII(OH2)(dpaq)]2+ ( J. Am. Chem. Soc. 2018, 140, 12695-12699). Because 1-ScIII and 1-AlIII show 1H NMR spectra essentially identical to that of [MnIII(OH2)(dpaq)]2+, the primary effect of these Lewis acids on 1 is protonation of the hydroxo ligand caused by an increase in the Brønsted acidity of the solution.

7.
Inorg Chem ; 58(1): 622-636, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525518

RESUMO

Mononuclear MnIII-hydroxo and dinuclear (µ-oxo)dimanganese(III,III) complexes were prepared using derivatives of the pentadentate, amide-containing dpaq ligand (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate). Each of these ligand derivatives (referred to as dpaq5R) contained a substituent R (where R = OMe, Cl, and NO2) at the 5-position of the quinolinyl group. Generation of the MnIII complexes was achieved by either O2 oxidation of MnII precursors (for [MnII(dpaq5OMe)]+ and [MnII(dpaq5Cl)]+ or PhIO oxidation (for [MnII(dpaq5NO2)]+). For each oxidized complex, 1H NMR experiments provided evidence of a water-dependent equilibrium between paramagnetic [MnIII(OH)(dpaq5R)]+ and an antiferromagnetically coupled [MnIIIMnIII(µ-O)(dpaq5R)2]2+ species in acetonitrile, with the addition of water favoring the MnIII-hydroxo species. This conversion could also be monitored by electronic absorption spectroscopy. Solid-state X-ray crystal structures for each [MnIIIMnIII(µ-O)(dpaq5R)2](OTf)2 complex revealed a nearly linear Mn-O-Mn core (angle of ca. 177°), with short Mn-O distances near 1.79 Å, and a Mn···Mn separation of 3.58 Å. X-ray crystallographic information was also obtained for the mononuclear [MnIII(OH)(dpaq5Cl)](OTf) complex, which has a short Mn-O(H) distance of 1.810(2) Å. The influence of the 5-substituted quinolinyl moiety on the electronic properties of the [MnIII(OH)(dpaq5R)]+ complexes was demonstrated through shifts in a number of 1H NMR resonances, as well as a steady increase in the MnIII/II cyclic voltammetry peak potential in the order [MnIII(OH)(dpaq5OMe)]+ < [MnIII(OH)(dpaq)]+ < [MnIII(OH)(dpaq5Cl)]+ < [MnIII(OH)(dpaq5NO2)]+. These changes in oxidizing power of the MnIII-hydroxo adducts translated to only modest rate enhancements for TEMPOH oxidation by the [MnIII(OH)(dpaq5R)]+ complexes, with the most reactive [MnIII(OH)(dpaq5NO2)]+ complex showing a second-order rate constant only 9-fold larger than that of the least reactive [MnIII(OH)(dpaq5OMe)]+ complex. These modest rate changes were understood on the basis of density functional theory (DFT)-computed p Ka values for the corresponding [MnII(OH2)(dpaq5R)]+ complexes. Collectively, the experimental and DFT results reveal that the 5-substituted quinolinyl groups have an inverse influence on electron and proton affinity for the MnIII-hydroxo unit.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...