Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell ; 187(5): 1296-1311.e26, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38428397

RESUMO

Most membrane proteins are modified by covalent addition of complex sugars through N- and O-glycosylation. Unlike proteins, glycans do not typically adopt specific secondary structures and remain very mobile, shielding potentially large fractions of protein surface. High glycan conformational freedom hinders complete structural elucidation of glycoproteins. Computer simulations may be used to model glycosylated proteins but require hundreds of thousands of computing hours on supercomputers, thus limiting routine use. Here, we describe GlycoSHIELD, a reductionist method that can be implemented on personal computers to graft realistic ensembles of glycan conformers onto static protein structures in minutes. Using molecular dynamics simulation, small-angle X-ray scattering, cryoelectron microscopy, and mass spectrometry, we show that this open-access toolkit provides enhanced models of glycoprotein structures. Focusing on N-cadherin, human coronavirus spike proteins, and gamma-aminobutyric acid receptors, we show that GlycoSHIELD can shed light on the impact of glycans on the conformation and activity of complex glycoproteins.


Assuntos
Glicoproteínas , Simulação de Dinâmica Molecular , Humanos , Microscopia Crioeletrônica , Glicoproteínas/química , Glicosilação , Polissacarídeos/química
3.
J Chem Inf Model ; 62(20): 4992-5008, 2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36179122

RESUMO

Despite their fundamental biological relevance, structure-property relationships in N-glycans are fundamentally lacking, and their highly multidimensional compositional and conformational phase spaces remain largely unexplored. The torsional flexibility of the glycosidic linkages and the ring dynamics result in wide, rugged free-energy landscapes that are difficult to sample in molecular dynamics simulations. We show that a novel enhanced-sampling scheme combining replica exchange with solute and collective-variable tempering, enabling transitions over all relevant energy barriers, delivers converged distributions of solvated N-glycan conformers. Several dimensionality-reduction algorithms are compared and employed to generate conformational free-energy maps in two dimensions. Together with an originally developed conformation-based nomenclature scheme that uniquely identifies glycan conformers, our modeling procedure is applied to reveal the effect of chemical substitutions on the conformational ensemble of selected high-mannose-type and complex glycans. Moreover, the structure-prediction capabilities of two commonly used glycan force fields are assessed via the theoretical prediction of experimentally available nuclear magnetic resonance J-coupling constants. The results especially confirm the key role of ω and ψ torsion angles in discriminating between different conformational states and suggest an intriguing correlation between the torsional and ring-puckering degrees of freedom that may be biologically relevant.


Assuntos
Manose , Racionalização , Manose/química , Conformação Molecular , Simulação de Dinâmica Molecular , Polissacarídeos/química
4.
J Biol Chem ; 298(10): 102403, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35995210

RESUMO

Trypanosomes cause the devastating disease trypanosomiasis, in which the action of trans-sialidase (TS) enzymes harbored on their surface is a key virulence factor. TS enzymes are N-glycosylated, but the biological functions of their glycans have remained elusive. In this study, we investigated the influence of N-glycans on the enzymatic activity and structural stability of TconTS1, a recombinant TS from the African parasite Trypanosoma congolense. We expressed the enzyme in Chinese hamster ovary Lec1 cells, which produce high-mannose type N-glycans similar to the TS N-glycosylation pattern in vivo. Our MALDI-TOF mass spectrometry data revealed that up to eight putative N-glycosylation sites were glycosylated. In addition, we determined that N-glycan removal via endoglycosidase Hf treatment of TconTS1 led to a decrease in substrate affinity relative to the untreated enzyme but had no impact on the conversion rate. Furthermore, we observed no changes in secondary structure elements of hypoglycosylated TconTS1 in CD experiments. Finally, our molecular dynamics simulations provided evidence for interactions between monosaccharide units of the highly flexible N-glycans and some conserved amino acids located at the catalytic site. These interactions led to conformational changes, possibly enhancing substrate accessibility and enzyme-substrate complex stability. The here-observed modulation of catalytic activity via N-glycans represents a so-far-unknown structure-function relationship potentially inherent in several members of the TS enzyme family.


Assuntos
Glicoproteínas , Neuraminidase , Trypanosoma congolense , Animais , Cricetinae , Células CHO , Cricetulus , Glicosilação , Neuraminidase/metabolismo , Polissacarídeos/metabolismo , Trypanosoma congolense/enzimologia , Glicoproteínas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...