Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
ArXiv ; 2024 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-38560734

RESUMO

Background: Autism spectrum disorder (ASD) is a complex neurodevelopmental condition with a wide range of behavioral and cognitive impairments. While genetic and environmental factors are known to contribute to its etiology, the underlying metabolic perturbations associated with ASD which can potentially connect genetic and environmental factors, remain poorly understood. Therefore, we conducted a metabolomic case-control study and performed a comprehensive analysis to identify significant alterations in metabolite profiles between children with ASD and typically developing (TD) controls. Objective: To elucidate potential metabolomic signatures associated with ASD in children and identify specific metabolites that may serve as biomarkers for the disorder. Methods: We conducted metabolomic profiling on plasma samples from participants in the second phase of Epidemiological Research on Autism in Jamaica (ERAJ-2), which was a 1:1 age (±6 months)-and sex-matched cohort of 200 children with ASD and 200 TD controls (2-8 years old). Using high-throughput liquid chromatography-mass spectrometry techniques, we performed a targeted metabolite analysis, encompassing amino acids, lipids, carbohydrates, and other key metabolic compounds. After quality control and imputation of missing values, we performed univariable and multivariable analysis using normalized metabolites while adjusting for covariates, age, sex, socioeconomic status, and child's parish of birth. Results: Our findings revealed unique metabolic patterns in children with ASD for four metabolites compared to TD controls. Notably, three of these metabolites were fatty acids, including myristoleic acid, eicosatetraenoic acid, and octadecenoic acid. Additionally, the amino acid sarcosine exhibited a significant association with ASD. Conclusions: These findings highlight the role of metabolites in the etiology of ASD and suggest opportunities for the development of targeted interventions.

2.
Am J Med Genet A ; : e63644, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38688863

RESUMO

The male predominance in sporadic thoracic aortic aneurysm and dissection (TAD) suggests that the X chromosome contributes to TAD, but this has not been tested. We investigated whether X-linked variation-common (minor allele frequency [MAF] ≥0.01) and rare (MAF <0.01)-was associated with sporadic TAD in three cohorts of European descent (Discovery: 364 cases, 874 controls; Replication: 516 cases, 440,131 controls, and ARIC [Atherosclerosis Risk in Communities study]: 753 cases, 2247 controls). For analysis of common variants, we applied a sex-stratified logistic regression model followed by a meta-analysis of sex-specific odds ratios. Furthermore, we conducted a meta-analysis of overlapping common variants between the Discovery and Replication cohorts. For analysis of rare variants, we used a sex-stratified optimized sequence kernel association test model. Common variants results showed no statistically significant findings in the Discovery cohort. An intergenic common variant near SPANXN1 was statistically significant in the Replication cohort (p = 1.81 × 10-8). The highest signal from the meta-analysis of the Discovery and Replication cohorts was a ZNF182 intronic common variant (p = 3.5 × 10-6). In rare variants results, RTL9 reached statistical significance (p = 5.15 × 10-5). Although most of our results were statistically insignificant, our analysis is the most comprehensive X-chromosome association analysis of sporadic TAD to date.

3.
Circ Genom Precis Med ; 17(2): e004370, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38506054

RESUMO

BACKGROUND: To realize the potential of genome engineering therapeutics, tractable strategies must be identified that balance personalized therapy with the need for off-the-shelf availability. We hypothesized that regional clustering of pathogenic variants can inform the design of rational prime editing therapeutics to treat the majority of genetic cardiovascular diseases with a limited number of reagents. METHODS: We collated 2435 high-confidence pathogenic/likely pathogenic (P/LP) variants in 82 cardiovascular disease genes from ClinVar. We assessed the regional density of these variants by defining a regional clustering index. We then combined a highly active base editor with prime editing to demonstrate the feasibility of a P/LP hotspot-directed genome engineering therapeutic strategy in vitro. RESULTS: P/LP variants in cardiovascular disease genes display higher regional density than rare variants found in the general population. P/LP missense variants displayed higher average regional density than P/LP truncating variants. Following hypermutagenesis at a pathogenic hotspot, mean prime editing efficiency across introduced variants was 57±27%. CONCLUSIONS: Designing therapeutics that target pathogenic hotspots will not only address known missense P/LP variants but also novel P/LP variants identified in these hotspots as well. Moreover, the clustering of P/LP missense rather than truncating variants in these hotspots suggests that prime editing technology is particularly valuable for dominant negative disease. Although prime editing technology in relation to cardiac health continues to improve, this study presents an approach to targeting the most impactful regions of the genome for inherited cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Edição de Genes , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Mutação de Sentido Incorreto
4.
Circ Res ; 134(7): 842-854, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38547246

RESUMO

BACKGROUND: Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS: This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS: We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS: Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Diabetes Mellitus Tipo 2/diagnóstico , Diabetes Mellitus Tipo 2/microbiologia , Dieta , Bactérias , Fibras na Dieta
5.
Clin Transl Sci ; 17(3): e13737, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38421234

RESUMO

Pharmacogenomics has the potential to inform drug dosing and selection, reduce adverse events, and improve medication efficacy; however, provider knowledge of pharmacogenomic testing varies across provider types and specialties. Given that many actionable pharmacogenomic genes are implicated in cardiovascular medication response variability, this study aimed to evaluate cardiology providers' knowledge and attitudes on implementing clinical pharmacogenomic testing. Sixty-one providers responded to an online survey, including pharmacists (46%), physicians (31%), genetic counselors (15%), and nurses (8%). Most respondents (94%) reported previous genetics education; however, only 52% felt their genetics education prepared them to order a clinical pharmacogenomic test. In addition, most respondents (66%) were familiar with pharmacogenomics, with genetic counselors being most likely to be familiar (p < 0.001). Only 15% of respondents had previously ordered a clinical pharmacogenomic test and a total of 36% indicated they are likely to order a pharmacogenomic test in the future; however, the vast majority of respondents (89%) were interested in pharmacogenomic testing being incorporated into diagnostic cardiovascular genetic tests. Moreover, 84% of providers preferred pharmacogenomic panel testing compared to 16% who preferred single gene testing. Half of the providers reported being comfortable discussing pharmacogenomic results with their patients, but the majority (60%) expressed discomfort with the logistics of test ordering. Reported barriers to implementation included uncertainty about the clinical utility and difficulty choosing an appropriate test. Taken together, cardiology providers have moderate familiarity with pharmacogenomics and limited experience with test ordering; however, they are interested in incorporating pharmacogenomics into diagnostic genetic tests and ordering pharmacogenomic panels.


Assuntos
Sistema Cardiovascular , Testes Farmacogenômicos , Humanos , Testes Genéticos , Farmacêuticos , Farmacogenética
6.
BMC Pediatr ; 24(1): 14, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38178055

RESUMO

BACKGROUND: Jamaican soil is abundant in heavy metals including mercury (Hg). Due to availability and ease of access, fish is a traditional dietary component in Jamaica and a significant source of Hg exposure. Mercury is a xenobiotic and known neuro-toxicant that affects children's neurodevelopment. Human glutathione S-transferase (GST) genes, including GSTT1, GSTM1, and GSTP1, affect Hg conjugation and elimination mechanisms. METHODS: In this exposure assessment study we used data from 375 typically developing (TD) 2-8-year-old Jamaican children to explore the association between environmental Hg exposure, GST genes, and their interaction effects on blood Hg concentrations (BHgCs). We used multivariable general linear models (GLMs). RESULTS: We identified the child's age, consumption of saltwater fish, canned fish (sardine, mackerel), string beans, grain, and starches (pasta, macaroni, noodles) as the environmental factors significantly associated with BHgCs (all P < 0.05). A significant interaction between consumption of canned fish (sardine, mackerel) and GSTP1 in relation to BHgC using either a co-dominant or recessive genetic model (overall interaction P = 0.01 and P < 0.01, respectively) indicated that consumption of canned fish (sardine, mackerel) was significantly associated with higher mean BHgC only among children with the GSTP1 Ile105Val, Ile/Ile [Ratio of mean Hg (95% CI) = 1.59 (1.09, 2.32), P = 0.02] and Ile/Val [Ratio of mean Hg (95% CI) = 1.46 (1.12, 1.91), P = 0.01] genotypes. CONCLUSIONS: Since this is the first study from Jamaica to report these findings, replication in other populations is recommended.


Assuntos
Glutationa Transferase , Mercúrio , Criança , Pré-Escolar , Humanos , Estudos de Casos e Controles , Predisposição Genética para Doença , Genótipo , Glutationa Transferase/genética , Jamaica , Mercúrio/sangue , Polimorfismo Genético , Fatores de Risco
7.
Arterioscler Thromb Vasc Biol ; 44(1): 300-313, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37916415

RESUMO

BACKGROUND: Polygenic risk scores (PRSs) for coronary artery disease (CAD) potentially improve cardiovascular risk prediction. However, their relationship with histopathologic features of CAD has never been examined systematically. METHODS: From 4327 subjects referred to CVPath by the State of Maryland Office Chief Medical Examiner for sudden death between 1994 and 2015, 2455 cases were randomly selected for genotyping. We generated PRS from 291 known CAD risk loci. Detailed histopathologic examination of the coronary arteries was performed in all subjects. The primary study outcome measurements were histopathologic plaque features determining severity of atherosclerosis, including %stenosis, calcification, thin-cap fibroatheromas, and thrombotic CAD. RESULTS: After exclusion of cases with insufficient DNA sample quality or with missing data, 954 cases (mean age, 48.8±14.7 years; 75.7% men) remained in the final study cohort. Subjects in the highest PRS quintile exhibited more severe atherosclerosis compared with subjects in the lowest quintile, with greater %stenosis (80.3%±27.0% versus 50.4%±38.7%; adjusted P<0.001) and a higher frequency of calcification (69.6% versus 35.8%; adjusted P=0.004) and thin-cap fibroatheroma (26.7% versus 9.5%; adjusted P=0.007). Even after adjustment for traditional CAD risk factors, subjects within the highest PRS quintile had higher odds of severe atherosclerosis (ie, ≥75% stenosis; adjusted odds ratio, 3.77 [95% CI, 2.10-6.78]; P<0.001) and plaque rupture (adjusted odds ratio, 4.05 [95% CI, 2.26-7.24]; P<0.001). Moreover, subjects within the highest quintile had higher odds of CAD-associated cause of death, especially among those aged ≤50 years (adjusted odds ratio, 4.08 [95% CI, 2.01-8.30]; P<0.001). No statistically significant associations were observed with plaque erosion after adjusting for covariates. CONCLUSIONS: This is the first autopsy study investigating associations between PRS and atherosclerosis severity at the histopathologic level in subjects with sudden death. Our pathological analysis suggests PRS correlates with plaque burden and features of advanced atherosclerosis and may be useful as a method for CAD risk stratification, especially in younger subjects.


Assuntos
Aterosclerose , Doença da Artéria Coronariana , Placa Aterosclerótica , Masculino , Humanos , Adulto , Pessoa de Meia-Idade , Feminino , Estratificação de Risco Genético , Constrição Patológica , Fatores de Risco , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/patologia , Morte Súbita , Autopsia
8.
J Am Heart Assoc ; 12(20): e029090, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37804200

RESUMO

Background The relationship between mitochondrial DNA copy number (mtDNA CN) and cardiovascular disease remains elusive. Methods and Results We performed cross-sectional and prospective association analyses of blood-derived mtDNA CN and cardiovascular disease outcomes in 27 316 participants in 8 cohorts of multiple racial and ethnic groups with whole-genome sequencing. We also performed Mendelian randomization to explore causal relationships of mtDNA CN with coronary heart disease (CHD) and cardiometabolic risk factors (obesity, diabetes, hypertension, and hyperlipidemia). P<0.01 was used for significance. We validated most of the previously reported associations between mtDNA CN and cardiovascular disease outcomes. For example, 1-SD unit lower level of mtDNA CN was associated with 1.08 (95% CI, 1.04-1.12; P<0.001) times the hazard for developing incident CHD, adjusting for covariates. Mendelian randomization analyses showed no causal effect from a lower level of mtDNA CN to a higher CHD risk (ß=0.091; P=0.11) or in the reverse direction (ß=-0.012; P=0.076). Additional bidirectional Mendelian randomization analyses revealed that low-density lipoprotein cholesterol had a causal effect on mtDNA CN (ß=-0.084; P<0.001), but the reverse direction was not significant (P=0.059). No causal associations were observed between mtDNA CN and obesity, diabetes, and hypertension, in either direction. Multivariable Mendelian randomization analyses showed no causal effect of CHD on mtDNA CN, controlling for low-density lipoprotein cholesterol level (P=0.52), whereas there was a strong direct causal effect of higher low-density lipoprotein cholesterol on lower mtDNA CN, adjusting for CHD status (ß=-0.092; P<0.001). Conclusions Our findings indicate that high low-density lipoprotein cholesterol may underlie the complex relationships between mtDNA CN and vascular atherosclerosis.


Assuntos
Doenças Cardiovasculares , Doença das Coronárias , Diabetes Mellitus , Hipertensão , Humanos , DNA Mitocondrial/genética , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/genética , LDL-Colesterol , Variações do Número de Cópias de DNA , Estudos Transversais , Doença das Coronárias/genética , HDL-Colesterol , Hipertensão/epidemiologia , Hipertensão/genética , Obesidade
9.
Nat Commun ; 14(1): 6113, 2023 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-37777527

RESUMO

Mitochondria carry their own circular genome and disruption of the mitochondrial genome is associated with various aging-related diseases. Unlike the nuclear genome, mitochondrial DNA (mtDNA) can be present at 1000 s to 10,000 s copies in somatic cells and variants may exist in a state of heteroplasmy, where only a fraction of the DNA molecules harbors a particular variant. We quantify mtDNA heteroplasmy in 194,871 participants in the UK Biobank and find that heteroplasmy is associated with a 1.5-fold increased risk of all-cause mortality. Additionally, we functionally characterize mtDNA single nucleotide variants (SNVs) using a constraint-based score, mitochondrial local constraint score sum (MSS) and find it associated with all-cause mortality, and with the prevalence and incidence of cancer and cancer-related mortality, particularly leukemia. These results indicate that mitochondria may have a functional role in certain cancers, and mitochondrial heteroplasmic SNVs may serve as a prognostic marker for cancer, especially for leukemia.


Assuntos
Leucemia , Mitocôndrias , Humanos , Mitocôndrias/genética , DNA Mitocondrial/genética , Heteroplasmia , Leucemia/genética , Mutação
10.
bioRxiv ; 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37461703

RESUMO

Background: Polygenic risk scores (PRS) for coronary artery disease (CAD) potentially improve cardiovascular risk prediction. However, their relationship with histopathologic features of CAD has never been examined systematically. Methods: From 4,327 subjects referred to CVPath by the State of Maryland Office Chief Medical Examiner (OCME) for sudden death between 1994 and 2015, 2,455 cases were randomly selected for genotyping. We generated PRS from 291 known CAD risk loci. Detailed histopathologic examination of the coronary arteries was performed in all subjects. The primary study outcome measurements were histopathologic plaque features determining severity of atherosclerosis, including %stenosis, calcification, thin-cap fibroatheromas (TCFA), and thrombotic CAD. Results: After exclusion of cases with insufficient DNA sample quality or with missing data, 954 cases (mean age 48.8±14.7; 75.7% men) remained in the final study cohort. Subjects in the highest PRS quintile exhibited more severe atherosclerosis compared to subjects in the lowest quintile, with greater %stenosis (80.3%±27.0% vs. 50.4%±38.7%; adjusted p<0.001) and a higher frequency of calcification (69.6% vs. 35.8%; adjusted p=0.004) and TCFAs (26.7% vs. 9.5%; adjusted p=0.007). Even after adjustment for traditional CAD risk factors subjects within the highest PRS quintile had higher odds of severe atherosclerosis (i.e., ≥75% stenosis; adjusted OR 3.77; 95%CI 2.10-6.78; p<0.001) and plaque rupture (adjusted OR 4.05; 95%CI 2.26-7.24; p<0.001). Moreover, subjects within the highest quintile had higher odds of CAD-associated cause of death, especially among those aged 50 years and younger (adjusted OR 4.08; 95%CI 2.01-8.30; p<0.001). No associations were observed with plaque erosion. Conclusions: This is the first autopsy study investigating associations between PRS and atherosclerosis severity at the histopathologic level in subjects with sudden death. Our pathological analysis suggests PRS correlates with plaque burden and features of advanced atherosclerosis and may be useful as a method for CAD risk stratification, especially in younger subjects. Highlights: In this autopsy study including 954 subjects within the CVPath Sudden Death Registry, high PRS correlated with plaque burden and atherosclerosis severity.The PRS showed differential associations with plaque rupture and plaque erosion, suggesting different etiologies to these two causes of thrombotic CAD.PRS may be useful for risk stratification, particularly in the young. Further examination of individual risk loci and their association with plaque morphology may help understand molecular mechanisms of atherosclerosis, potentially revealing new therapy targets of CAD. Graphic Abstract: A polygenic risk score, generated from 291 known CAD risk loci, was assessed in 954 subjects within the CVPath Sudden Death Registry. Histopathologic examination of the coronary arteries was performed in all subjects. Subjects in the highest PRS quintile exhibited more severe atherosclerosis as compared to subjects in the lowest quintile, with a greater plaque burden, more calcification, and a higher frequency of plaque rupture.

11.
Med Sci Sports Exerc ; 55(10): 1781-1791, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37170952

RESUMO

PURPOSE: The aim of this study was to understand the serum metabolomic signatures of moderate-to-vigorous physical activity (MVPA) and sedentary behavior, and further associate their metabolomic signatures with incident cardiometabolic diseases. METHODS: This analysis included 2711 US Hispanics/Latinos from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL) aged 18-74 yr (2008-2011). An untargeted, liquid chromatography-mass spectrometry was used to profile the serum metabolome. The associations of metabolites with accelerometer-measured MVPA and sedentary time were examined using survey linear regressions adjusting for covariates. The weighted correlation network analysis identified modules of correlated metabolites in relation to sedentary time, and the modules were associated with incident diabetes, dyslipidemia, and hypertension over the 6-yr follow-up. RESULTS: Of 624 metabolites, 5 and 102 were associated with MVPA and sedentary behavior at false discovery rate (FDR) <0.05, respectively, after adjusting for socioeconomic and lifestyle factors. The weighted correlation network analysis identified 8 modules from 102 metabolites associated with sedentary time. Four modules (branched-chain amino acids, erythritol, polyunsaturated fatty acid, creatine) were positively, and the other four (acyl choline, plasmalogen glycerol phosphatidyl choline, plasmalogen glycerol phosphatidyl ethanolamine, urea cycle) were negatively correlated with sedentary time. Among these modules, a higher branched-chain amino acid score and a lower plasmalogen glycerol phosphatidyl choline score were associated with increased risks of diabetes and dyslipidemia. A higher erythritol score was associated with an increased risk of diabetes, and a lower acyl choline score was linked to an increased risk of hypertension. CONCLUSIONS: In this study of US Hispanics/Latinos, we identified multiple serum metabolomic signatures of sedentary behavior and their associations with risk of incident diabetes, hypertension, and dyslipidemia. These findings suggest a potential role of circulating metabolites in the links between sedentary behavior and cardiometabolic diseases.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus , Hipertensão , Metaboloma , Comportamento Sedentário , Humanos , Glicerol , Hispânico ou Latino , Plasmalogênios , Fatores de Risco , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso
12.
J Autism Dev Disord ; 2022 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-36436147

RESUMO

To investigate additive and interactive associations of food allergies with three glutathione S-transferase (GST) genes in relation to ASD and ASD severity in Jamaican children. Using data from 344 1:1 age- and sex-matched ASD cases and typically developing controls, we assessed additive and interactive associations of food allergies with polymorphisms in GST genes (GSTM1, GSTP1 and GSTT1) in relation to ASD by applying conditional logistic regression models, and in relation to ASD severity in ASD cases as measured by the Autism Diagnostic Observation Schedule-2nd Edition (ADOS-2) total and domains specific comparison scores (CSs) by fitting general linear models. Although food allergies and GST genes were not associated with ASD, ASD cases allergic to non-dairy food had higher mean ADOS-2 Restricted and Repetitive Behaviors (RRB) CS (8.8 vs. 8.0, P = 0.04). In addition, allergy to dairy was associated with higher mean RRB CS only among ASD cases with GSTT1 DD genotype (9.9 vs. 7.8, P < 0.01, interaction P = 0.01), and GSTP1 Val/Val genotype under a recessive genetic model (9.8 vs. 7.8, P = 0.02, interaction P = 0.06). Our findings are consistent with the role for GST genes in ASD and food allergies, though require replication in other populations.

13.
Genes (Basel) ; 13(10)2022 10 20.
Artigo em Inglês | MEDLINE | ID: mdl-36292793

RESUMO

Aluminum (Al) is a metallic toxicant at high concentrations following natural or unnatural exposures. Dietary intake is considered as the main source of aluminum exposure in children. We used data from 366 typically developing (TD) children (ages 2−8 years) who participated as controls in an age- and sex-matched case−control study in Jamaica. We investigated additive and interactive associations among environmental factors and children's genotypes for glutathione S-transferase (GST) genes (GSTT1, GSTM1, GSTP1), in relation to having a detectable blood aluminum concentration (BAlC) of >5.0 µg/L, using multivariable logistic regression models. Findings from interactive models revealed that the odds of having a detectable BAlC was significantly higher among children who ate string beans (p ≤ 0.01), whereas about 40% lower odds of having a detectable BAlC was observed in children with higher parental education level, (p = 0.02). A significant interaction between consumption of saltwater fish and GSTP1 in relation to having a detectable BAlC using either co-dominant or dominant genetic models (overall interaction p = 0.02 for both models) indicated that consumption of saltwater fish was associated with higher odds of having a detectable BAlC only among children with the GSTP1 Ile105Val Ile/Ile genotype using either co-dominant or dominant models [OR (95% CI) = 2.73 (1.07, 6.96), p = 0.04; and OR (95% CI) = 2.74 (1.08, 6.99), p = 0.03]. Since this is the first study from Jamaica that reports such findings, replication in other populations is warranted.


Assuntos
Alumínio , Polimorfismo Genético , Alumínio/toxicidade , Jamaica , Estudos de Casos e Controles , Glutationa Transferase/genética , Glutationa S-Transferase pi/genética
14.
Genes (Basel) ; 13(6)2022 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-35741737

RESUMO

Glutathione S-transferases (GST) are involved in the detoxification of exogenous chemicals including lead (Pb). Using data from 344 pairs of autism spectrum disorder (ASD) cases and age- and sex-matched typically developing (TD) controls (2−8 years old) from Jamaica, we investigated the interaction between three GST genes and ASD status as determinants of blood Pb concentrations (BPbCs). We found that ASD cases had lower geometric mean BPbCs than TD children (1.74 vs. 2.27 µg/dL, p < 0.01). Using a co-dominant genetic model, ASD cases with the Ile/Val genotype for the GSTP1 Ile105Val polymorphism had lower GM BPbCs than TD controls, after adjusting for a known interaction between GSTP1 and GSTT1, child's parish, socioeconomic status, consumption of lettuce, fried plantains, and canned fish (Ile/Val: 1.78 vs. 2.13 µg/dL, p = 0.03). Similarly, among carriers of the I/I or I/D (I*) genotype for GSTT1 and GSTM1, ASD cases had lower adjusted GM BPbCs than TD controls (GSTT1 I*: 1.61 vs. 1.91 µg/dL, p = 0.01; GSTM1 I*: 1.71 vs. 2.04 µg/dL, p = 0.01). Our findings suggest that genetic polymorphisms in GST genes may influence detoxification of Pb by the enzymes they encode in Jamaican children with and without ASD.


Assuntos
Transtorno do Espectro Autista , Glutationa Transferase , Chumbo , Transtorno do Espectro Autista/genética , Criança , Pré-Escolar , Glutationa Transferase/genética , Humanos , Jamaica , Chumbo/sangue
15.
NAR Genom Bioinform ; 4(2): lqac034, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35591888

RESUMO

Mitochondrial diseases are a heterogeneous group of disorders that can be caused by mutations in the nuclear or mitochondrial genome. Mitochondrial DNA (mtDNA) variants may exist in a state of heteroplasmy, where a percentage of DNA molecules harbor a variant, or homoplasmy, where all DNA molecules have the same variant. The relative quantity of mtDNA in a cell, or copy number (mtDNA-CN), is associated with mitochondrial function, human disease, and mortality. To facilitate accurate identification of heteroplasmy and quantify mtDNA-CN, we built a bioinformatics pipeline that takes whole genome sequencing data and outputs mitochondrial variants, and mtDNA-CN. We incorporate variant annotations to facilitate determination of variant significance. Our pipeline yields uniform coverage by remapping to a circularized chrM and by recovering reads falsely mapped to nuclear-encoded mitochondrial sequences. Notably, we construct a consensus chrM sequence for each sample and recall heteroplasmy against the sample's unique mitochondrial genome. We observe an approximately 3-fold increased association with age for heteroplasmic variants in non-homopolymer regions and, are better able to capture genetic variation in the D-loop of chrM compared to existing software. Our bioinformatics pipeline more accurately captures features of mitochondrial genetics than existing pipelines that are important in understanding how mitochondrial dysfunction contributes to disease.

18.
Nat Biotechnol ; 40(7): 1035-1041, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35347328

RESUMO

Whole-genome sequencing (WGS) can identify variants that cause genetic disease, but the time required for sequencing and analysis has been a barrier to its use in acutely ill patients. In the present study, we develop an approach for ultra-rapid nanopore WGS that combines an optimized sample preparation protocol, distributing sequencing over 48 flow cells, near real-time base calling and alignment, accelerated variant calling and fast variant filtration for efficient manual review. Application to two example clinical cases identified a candidate variant in <8 h from sample preparation to variant identification. We show that this framework provides accurate variant calls and efficient prioritization, and accelerates diagnostic clinical genome sequencing twofold compared with previous approaches.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , Mapeamento Cromossômico , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Sequenciamento Completo do Genoma/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...