Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
PLoS One ; 10(3): e0118261, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25739030

RESUMO

Two CT features were developed to quantitatively describe lung adenocarcinomas by scoring tumor shape complexity (feature 1: convexity) and intratumor density variation (feature 2: entropy ratio) in routinely obtained diagnostic CT scans. The developed quantitative features were analyzed in two independent cohorts (cohort 1: n = 61; cohort 2: n = 47) of patients diagnosed with primary lung adenocarcinoma, retrospectively curated to include imaging and clinical data. Preoperative chest CTs were segmented semi-automatically. Segmented tumor regions were further subdivided into core and boundary sub-regions, to quantify intensity variations across the tumor. Reproducibility of the features was evaluated in an independent test-retest dataset of 32 patients. The proposed metrics showed high degree of reproducibility in a repeated experiment (concordance, CCC≥0.897; dynamic range, DR≥0.92). Association with overall survival was evaluated by Cox proportional hazard regression, Kaplan-Meier survival curves, and the log-rank test. Both features were associated with overall survival (convexity: p = 0.008; entropy ratio: p = 0.04) in Cohort 1 but not in Cohort 2 (convexity: p = 0.7; entropy ratio: p = 0.8). In both cohorts, these features were found to be descriptive and demonstrated the link between imaging characteristics and patient survival in lung adenocarcinoma.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Adenocarcinoma/patologia , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/patologia , Tomografia Computadorizada por Raios X , Adenocarcinoma de Pulmão , Idoso , Entropia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Prognóstico , Modelos de Riscos Proporcionais , Estudos Retrospectivos
3.
Transl Oncol ; 7(1): 72-87, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24772210

RESUMO

We study the reproducibility of quantitative imaging features that are used to describe tumor shape, size, and texture from computed tomography (CT) scans of non-small cell lung cancer (NSCLC). CT images are dependent on various scanning factors. We focus on characterizing image features that are reproducible in the presence of variations due to patient factors and segmentation methods. Thirty-two NSCLC nonenhanced lung CT scans were obtained from the Reference Image Database to Evaluate Response data set. The tumors were segmented using both manual (radiologist expert) and ensemble (software-automated) methods. A set of features (219 three-dimensional and 110 two-dimensional) was computed, and quantitative image features were statistically filtered to identify a subset of reproducible and nonredundant features. The variability in the repeated experiment was measured by the test-retest concordance correlation coefficient (CCCTreT). The natural range in the features, normalized to variance, was measured by the dynamic range (DR). In this study, there were 29 features across segmentation methods found with CCCTreT and DR ≥ 0.9 and R(2) Bet ≥ 0.95. These reproducible features were tested for predicting radiologist prognostic score; some texture features (run-length and Laws kernels) had an area under the curve of 0.9. The representative features were tested for their prognostic capabilities using an independent NSCLC data set (59 lung adenocarcinomas), where one of the texture features, run-length gray-level nonuniformity, was statistically significant in separating the samples into survival groups (P ≤ .046).

4.
PLoS One ; 8(12): e82875, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24358232

RESUMO

Combinations of targeted drugs have been employed to treat sarcomas, however, response rates have not improved notably, therefore emphasizing the need for novel treatments. In addition, imaging approaches to assess therapeutic response is lacking, as currently measurable indices, such as volume and/or diameter, do not accurately correlate with changes in tumor biology. In this study, quantitative and profound analyses of magnetic resonance imaging (MRI) were developed to evaluate these as imaging biomarkers for MK1775 and Gem in an osteosarcoma xenotransplant model at early time-points following treatment. Notably, we showed that Gem and Gem+MK1775 groups had significantly inhibited tumor growth by day 4, which was presaged by elevations in mean ADC by 24 hours post treatment. Significant differences were also observed at later time points for the Gem+MK1775 combination and MK1775 therapy. ADC distribution and entropy (randomness of ADC values) were also elevated by 24 hours following therapy. Immunohistochemistry demonstrated that these treatment-related increases in ADC correlated with apoptosis and observed cell condensations (dense- and exploded bodies). These findings underline the role of ADC as a quantitative imaging biomarker for therapy-induced response and show promising clinical relevance in the sarcoma patient population.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Neoplasias Ósseas/diagnóstico , Neoplasias Ósseas/tratamento farmacológico , Desoxicitidina/análogos & derivados , Imagem de Difusão por Ressonância Magnética , Osteossarcoma/diagnóstico , Osteossarcoma/tratamento farmacológico , Pirazóis/administração & dosagem , Pirimidinas/administração & dosagem , Animais , Neoplasias Ósseas/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Desoxicitidina/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos SCID , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Osteossarcoma/patologia , Prognóstico , Pirimidinonas , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto , Gencitabina
5.
Radiology ; 269(1): 8-15, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24062559

RESUMO

Cancer therapy, even when highly targeted, typically fails because of the remarkable capacity of malignant cells to evolve effective adaptations. These evolutionary dynamics are both a cause and a consequence of cancer system heterogeneity at many scales, ranging from genetic properties of individual cells to large-scale imaging features. Tumors of the same organ and cell type can have remarkably diverse appearances in different patients. Furthermore, even within a single tumor, marked variations in imaging features, such as necrosis or contrast enhancement, are common. Similar spatial variations recently have been reported in genetic profiles. Radiologic heterogeneity within tumors is usually governed by variations in blood flow, whereas genetic heterogeneity is typically ascribed to random mutations. However, evolution within tumors, as in all living systems, is subject to Darwinian principles; thus, it is governed by predictable and reproducible interactions between environmental selection forces and cell phenotype (not genotype). This link between regional variations in environmental properties and cellular adaptive strategies may permit clinical imaging to be used to assess and monitor intratumoral evolution in individual patients. This approach is enabled by new methods that extract, report, and analyze quantitative, reproducible, and mineable clinical imaging data. However, most current quantitative metrics lack spatialness, expressing quantitative radiologic features as a single value for a region of interest encompassing the whole tumor. In contrast, spatially explicit image analysis recognizes that tumors are heterogeneous but not well mixed and defines regionally distinct habitats, some of which appear to harbor tumor populations that are more aggressive and less treatable than others. By identifying regional variations in key environmental selection forces and evidence of cellular adaptation, clinical imaging can enable us to define intratumoral Darwinian dynamics before and during therapy. Advances in image analysis will place clinical imaging in an increasingly central role in the development of evolution-based patient-specific cancer therapy.


Assuntos
Diagnóstico por Imagem/métodos , Predisposição Genética para Doença/genética , Modelos Genéticos , Neoplasias/diagnóstico , Neoplasias/genética , Medicina de Precisão/métodos , Ecologia , Humanos
6.
Proc Inst Mech Eng H ; 226(10): 737-51, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23157075

RESUMO

Biomedical data visualization and modeling rely predominately on manual processing and utilization of voxel- and facet-based homogeneous models. Biological structures are naturally heterogeneous and it is important to incorporate properties, such as material composition, size and shape, into the modeling process. A method to approximate image density data with a continuous B-spline surface is presented. The proposed approach generates a density point cloud, based on medical image data to reproduce heterogeneity across the image, through point densities. The density point cloud is ordered and approximated with a set of B-spline curves. A B-spline surface is lofted through the cross-sectional B-spline curves preserving the heterogeneity of the point cloud dataset. Preliminary results indicate that the proposed methodology produces a mathematical representation capable of capturing and preserving density variations with high fidelity.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Modelos Anatômicos , Análise Numérica Assistida por Computador , Animais , Simulação por Computador , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA