Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 680: 51-60, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37717341

RESUMO

Adoptive immunotherapy using chimeric antigen receptor (CAR) T cells has made significant success in treating hematological malignancies, paving the way for solid tumors like prostate cancer. However, progress is impeded by a paucity of suitable target antigens. A novel carbohydrate antigen, F77, is expressed on both androgen-dependent and androgen-independent prostate cancer cells, making it a potential immunotherapy target. This study entails the generation and evaluation of a second-generation CAR against a carbohydrate antigen on malignant prostate cancer cells. Using a single chain fragment variable (scFv) from an F77-specific mouse monoclonal antibody, we created second-generation CARs with CD28 and CD137 (4-1BB) costimulatory signals. F77 expressing lentiviral CAR T cells produce cytokines and kill tumor cells in a F77 expression-dependent manner. These F77-specific CAR T cells eradicate prostate tumors in a human xenograft model employing PC3 cells. These findings validate F77 as a promising immunotherapeutic target for prostate cancer and other malignancies with this aberrant carbohydrate structure.


Assuntos
Androgênios , Neoplasias da Próstata , Masculino , Animais , Camundongos , Humanos , Linhagem Celular Tumoral , Neoplasias da Próstata/patologia , Imunoterapia Adotiva , Carboidratos , Terapia Baseada em Transplante de Células e Tecidos , Receptores de Antígenos de Linfócitos T/genética , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Biochem Biophys Res Commun ; 651: 39-46, 2023 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-36791497

RESUMO

Mutations in the epidermal growth factor receptor (EGFR) have been found in more than 10% of non-small cell lung cancer (NSCLC) patients in North America. The vast majority of these differences are L858R point mutations in Exon 21. Currently, monoclonal antibodies directed against the extracellular domain of EGFR or small molecule/tyrosine kinase inhibitors (TKI) are the stalwarts of NSCLC therapy. Resistance, however, gradually develops because of the T790 mutation towards first and second generation TKIs. The third generation TKI AZD9291 (Osimertinib) has a high affinity for both activating and the acquired resistant mutation (T790 M) in EGFR, with a low affinity towards wild-type EGFR. Recent research, however, suggests that the EGFR (C797S) mutation in the tyrosine kinase domain is a likely cause of resistance to AZD9291. Another significant transformation mechanism associated with this resistance is erbB2 amplification. Our laboratory has developed a small kinase inhibitor, ER121 (MW: ∼500), that inhibits the erbB2/HER2 tyrosine kinases in addition to the EGFR C797S mutations. We have identified a TKI, ER121 targeting the mutant EGFR(T790 M). Using in vitro and in vivo models, examined the efficacy of ER121 on mutant EGFR cell lines. This has enabled us to establish that ER121 is well tolerated when administered orally and produces significant inhibitory activity against human cancers generated by mutant EGFR and amplified ErbB2.


Assuntos
Antineoplásicos , Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Feminino , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Neoplasias Pulmonares/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Antineoplásicos/uso terapêutico , Mutação , Receptor ErbB-2/genética , Receptores ErbB/genética , Receptores ErbB/farmacologia
3.
J BioX Res ; 5(3): 97-103, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36212029

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic was triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a previously unknown strain of coronavirus. To fully understand the consequences and complications of SARS-CoV-2 infections, we have reviewed current literature on coagulation dysfunctions that are related to the disease and vaccination. While COVID-19 is more commonly considered as a respiratory illness, studies indicate that, in addition to respiratory illness, a coagulation dysfunction may develop in individuals after the initial infection, placing them at the risk of developing thrombotic events. Patients who died of COVID-19 had higher levels of D-dimer, a biomarker for blood clot formation and breakdown. Effective treatments for coagulation dysfunctions are critically needed to improve patient survival. On the other hand, antibodies against platelet factor 4 (PF4)/heparin may be found in patients with rare instances of vaccine-induced immunological thrombotic thrombocytopenia (VITT) following vaccination with adenovirus-based vaccines. VITT is characterized by atypical thrombosis and thrombocytopenia, similar to immune-mediated heparin-induced thrombocytopenia (HIT), but with no need for heparin to trigger the immune response. Although both adenovirus-based and mRNA-based vaccines express the Spike protein of SARS-CoV-2, VITT is exclusively related to adenovirus-based vaccines. Due to the resemblance with HIT, the use of heparin is highly discouraged against treating patients with thrombotic thrombocytopenia after SARS-CoV-2 infection or with VITT after vaccination. Intravenous immunoglobulin therapy coupled with anticoagulation is recommended instead. The well-studied anti-PF4 monoclonal antibody RTO, which does not induce pathologic immune complexes in the presence of heparin and has been humanized for a potential treatment modality for HIT, may provide a nonanticoagulant HIT-specific solution to the problem of increased blood coagulation after SARS-CoV-2 infection or the VITT after immunization.

4.
J Immunother Cancer ; 10(6)2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35710296

RESUMO

BACKGROUND: Human epidermal growth factor receptor 2 (HER2) targeted antibodies in combination with chemotherapy has improved outcomes of HER2 positive (pos) breast cancer (BC) but toxicity of therapy remains a problem. High levels of tumor-infiltrating lymphocytes are associated with increased pathologic complete responses for patients treated with neoadjuvant therapy. Here we sought to investigate whether delivery of intratumoral (i.t.) multiepitope major histocompatibility complex (MHC) class II HER2 peptides-pulsed type I polarized dendritic cells (HER2-DC1) in combination with anti-HER2 antibodies without chemotherapy could enhance tumor regression by increasing anti-HER2 lymphocyte infiltration into the tumor. METHODS: BALB/c mice bearing orthotopic TUBO tumors, BALB/c mice bearing subcutaneous (s.c.) CT26 hHER2 tumors, or BALB-HER2/neu transgenic mice were all treated with i.t. or s.c. HER2-DC1, anti-HER2 antibodies, paclitaxel, T-DM1 or in combination. Immune response, host immune cells and effector function were analyzed using flow cytometry, interferon-γ ELISA and cytokine/chemokine arrays. The contributions of CD4+ and CD8+ T cells and antibody dependent cellular cytotoxicity (ADCC) were assessed using depleting antibodies and FcγR KO mice. Molecular changes were evaluated by immunohistochemistry and western blot. RESULTS: HER2-DC1 combined with anti-HER2 antibodies delivered i.t. compared to s.c. induced complete tumor regression in 75-80% of treated mice, with increased tumor infiltrating CD4+ and CD8+ T, B, natural killer T cells (NKT) and natural killer cells, and strong anti-HER2 responses in all HER2pos BC models tested. The therapy caused regression of untreated distant tumors. Labeled HER2-DC1 migrated prominently into the distant tumor and induced infiltration of various DC subsets into tumors. HER2-DC1 i.t. combined with anti-HER2 antibodies displayed superior antitumor response compared to standard chemotherapy with anti-HER2 antibodies. Lasting immunity was attained which prevented secondary tumor formation. The presence of CD4+ and CD8+ T cells and ADCC were required for complete tumor regression. In the HER2pos BC models, HER2-DC1 i.t. combined with anti-HER2 antibodies effectively diminished activation of HER2-mediated oncogenic signaling pathways. CONCLUSIONS: HER2-DC1 i.t. with anti-HER2 antibodies mediates tumor regression through combined activation of T and B cell compartments and provides evidence that HER2-DC1 i.t. in combination with anti-HER2 antibodies can be tested as an effective alternative therapeutic strategy to current chemotherapy and anti-HER2 antibodies in HER2pos BC.


Assuntos
Neoplasias da Mama , Carcinoma , Animais , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linfócitos T CD8-Positivos , Células Dendríticas , Feminino , Humanos , Camundongos , Receptor ErbB-2
5.
Front Immunol ; 12: 750542, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34675933

RESUMO

T regulatory cells suppress a variety of immune responses to self-antigens and play a role in peripheral tolerance maintenance by limiting autoimmune disorders, and other pathological immune responses such as limiting immune reactivity to oncoprotein encoded antigens. Forkhead box P3 (FOXP3) expression is required for Treg stability and affects functional activity. Mutations in the master regulator FOXP3 and related components have been linked to autoimmune diseases in humans, such as IPEX, and a scurfy-like phenotype in mice. Several lines of evidence indicate that Treg use a variety of immunosuppressive mechanisms to limit an immune response by targeting effector cells, including secretion of immunoregulatory cytokines, granzyme/perforin-mediated cell cytolysis, metabolic perturbation, directing the maturation and function of antigen-presenting cells (APC) and secretion of extracellular vesicles for the development of immunological tolerance. In this review, several regulatory mechanisms have been highlighted and discussed.


Assuntos
Linfócitos T Reguladores/imunologia , Animais , Fatores de Transcrição Forkhead/imunologia , Humanos
6.
Artigo em Inglês | MEDLINE | ID: mdl-34703307

RESUMO

Breast cancer is a highly prevalent malignancy that shows improved outcomes with earlier diagnosis. Current screening and monitoring methods have improved survival rates, but the limitations of these approaches have led to the investigation of biomarker evaluation to improve early diagnosis and treatment monitoring. The enzyme-linked immunosorbent assay (ELISA) is a specific and robust technique ideally suited for the quantification of protein biomarkers from blood or its constituents. The continued clinical relevancy of this assay format will require overcoming specific technical challenges, including the ultra-sensitive detection of trace biomarkers and the circumventing of potential assay interference due to the expanding use of monoclonal antibody (mAb) therapeutics. Approaches to increasing the sensitivity of ELISA have been numerous and include employing more sensitive substrates, combining ELISA with the polymerase chain reaction (PCR), and incorporating nanoparticles as shuttles for detection antibodies and enzymes. These modifications have resulted in substantial boosts in the ability to detect extremely low levels of protein biomarkers, with some systems reliably detecting antigen at sub-femtomolar concentrations. Extensive utilization of mAb therapies in oncology has presented an additional contemporary challenge for ELISA, particularly when both therapeutic and assay antibodies target the same protein antigen. Resolution of issues such as epitope overlap and steric hindrance requires a rational approach to the design of diagnostic antibodies that takes advantage of modern antibody generation pipelines, epitope binning techniques and computational methods to strategically target biomarker epitopes. This review discusses technical strategies in ELISA implemented to date and their feasibility to address current constraints on sensitivity and problems with interference in the clinical setting. The impact of these recent advancements will depend upon their transformation from research laboratory protocols into facile, reliable detection systems that can ideally be replicated in point-of-care devices to maximize utilization and transform both the diagnostic and therapeutic monitoring landscape.

7.
J Chem Inf Model ; 61(9): 4321-4330, 2021 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-34491053

RESUMO

The origin of genetic material on earth is an age-old, entangled mystery that lacks a unanimous explanation. Recent studies have suggested that noncanonical bases such as barbituric acid (BA), melamine (MM), cyanuric acid (CA), and 2,4,6-triaminopyrimidine (TAP) may have undergone molecular selection within the "prebiotic soup" to spontaneously form supramolecular assemblies, which then covalently assembled into an RNA-like polymer (preRNA). However, information on the role of intrinsic interactions of these candidate heterocycles in their molecular selection as the components of preRNA, and the subsequent transition from preRNA to RNA, is currently missing in the literature. To fill this gap in our knowledge on the origin and evolution of primitive genetics, the present work employs density functional theory (B3LYP-D3) to evaluate and compare the stacking propensities of dimers containing prebiotic noncanonical (BA, MM, CA, and TAP) and/or canonical RNA bases (A, C, G, and U). Our detailed analysis of the variation in stacking strength with respect to four characteristic geometrical parameters between the monomers [i.e., the vertical distance, the angle of rotation, and (two) displacements in the x and y directions] reveals that stacking between nonidentical bases is preferred over identical bases for both prebiotic-prebiotic and canonical-canonical dimers. This not only underscores the similarity between the fundamental chemical properties of preRNA and RNA constituents but also supports the likelihood of the evolution of modern (RNA) genetics from primitive (preRNA) genetics. Furthermore, greater average stacking stabilization of canonical dimers than that of dimers containing one canonical and one preRNA nucleobase (by ∼5 kJ mol-1) or dimers solely containing preRNA nucleobases (by ∼12 kJ mol-1) indicates that enhanced stacking is an important factor that may have spurred the evolution of preRNA to an intermediate informational polymer to RNA. More importantly, our study identifies the central roles of CA, BA, and TAP in stacking stabilization within the preRNA and of BA in stacking interactions within the intermediate polymers and suggests that these heterocycles may have played distinct roles in various stages during the evolution from preRNA to RNA. Overall, our results highlight the significance of stacking interactions in the selection of nucleobase components of preRNA.


Assuntos
RNA , RNA/genética
8.
Chem Sci ; 12(7): 2655-2666, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-34164034

RESUMO

225Ac-based radiopharmaceuticals have the potential to become invaluable in designated cancer therapy. However, the limited understanding of the solution chemistry and bonding properties of actinium has hindered the development of existing and emerging targeted radiotherapeutics, which also poses a significant challenge in the discovery of new agents. Herein, we report the geometric and electronic structural properties of hydrated AcIII cations in the [AcIII(H2O) n ]3+ (n = 4-11) complexes in aqueous solution and gas-phase using density functional theory. We found that nine water molecules coordinated to the AcIII cation is the most stable complex due to an enhanced hydration Gibbs free energy. This complex adopts a closed-shell 18-electron configuration (1S 21P 61D 10) of a superatom state, which indicates a non-negligible covalent character and involves H2O → AcIII σ donation interaction between s-/p-/d-type atomic orbitals of the Ac atom and 2p atomic orbitals of the O atoms. Furthermore, potentially existing 10-coordinated complexes need to overcome an energy barrier (>0.10 eV) caused by hydrogen bonding to convert to 9-coordination. These results imply the importance of superatom states in actinide chemistry generally, and specifically in AcIII solution chemistry, and highlight the conversion mechanism between different coordination numbers.

9.
Inorg Chem ; 60(10): 6971-6975, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33909433

RESUMO

The 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) aqueous complexes of AcIII with H2O, dimethyl sulfoxide (DMSO), OH-, and F- as axial ligands were studied using density functional theory. Formation of the [AcIII(DOTA)(OH)]2- and [AcIII(DOTA)(F)]2- complexes is predicted to be significantly more favorable than that of [AcIII(DOTA)(H2O)]- and [AcIII(DOTA)(DMSO)]- because of the enhanced relative Gibbs free energies. Further electronic structure analyses demonstrate that the type and nature of the bond between Ac and the ligand donor atom is the main driving force that determines the thermodynamic stability of the complexes. Specifically, the [AcIII(DOTA)]- complex strongly binds to OH- and F- via covalent bonds, while the bonding to H2O and DMSO is ionic and relatively weaker.

10.
Front Pediatr ; 9: 607292, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33614551

RESUMO

Regulatory T (Treg) cells play a role in the maintenance of immune homeostasis and are critical mediators of immune tolerance. The Forkhead box P3 (FOXP3) protein acts as a regulator for Treg development and function. Mutations in the FOXP3 gene can lead to autoimmune diseases such as Immunodysregulation, polyendocrinopathy, enteropathy, and X-linked (IPEX) syndrome in humans, often resulting in death within the first 2 years of life and a scurfy like phenotype in Foxp3 mutant mice. We discuss biochemical features of the FOXP3 ensemble including its regulation at various levels (epigenetic, transcriptional, and post-translational modifications) and molecular functions. The studies also highlight the interactions of FOXP3 and Tat-interacting protein 60 (Tip60), a principal histone acetylase enzyme that acetylates FOXP3 and functions as an essential subunit of the FOXP3 repression ensemble complex. Lastly, we have emphasized the role of allosteric modifiers that help stabilize FOXP3:Tip60 interactions and discuss targeting this interaction for the therapeutic manipulation of Treg activity.

11.
Mol Ther ; 29(4): 1541-1556, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33412308

RESUMO

HER2 breast cancer (BC) remains a significant problem in patients with locally advanced or metastatic BC. We investigated the relationship between T helper 1 (Th1) immune response and the proteasomal degradation pathway (PDP), in HER2-sensitive and -resistant cells. HER2 overexpression is partially maintained because E3 ubiquitin ligase Cullin5 (CUL5), which degrades HER2, is frequently mutated or underexpressed, while the client-protective co-chaperones cell division cycle 37 (Cdc37) and heat shock protein 90 (Hsp90) are increased translating to diminished survival. The Th1 cytokine interferon (IFN)-γ caused increased CUL5 expression and marked dissociation of both Cdc37 and Hsp90 from HER2, causing significant surface loss of HER2, diminished growth, and induction of tumor senescence. In HER2-resistant mammary carcinoma, either IFN-γ or Th1-polarizing anti-HER2 vaccination, when administered with anti-HER2 antibodies, demonstrated increased intratumor CUL5 expression, decreased surface HER2, and tumor senescence with significant therapeutic activity. IFN-γ synergized with multiple HER2-targeted agents to decrease surface HER2 expression, resulting in decreased tumor growth. These data suggest a novel function of IFN-γ that regulates HER2 through the PDP pathway and provides an opportunity to impact HER2 responses through anti-tumor immunity.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Proteínas Culina/genética , Interferon gama/genética , Receptor ErbB-2/imunologia , Neoplasias da Mama/genética , Neoplasias da Mama/imunologia , Neoplasias da Mama/patologia , Proteínas de Ciclo Celular/genética , Linhagem Celular Tumoral , Senescência Celular/genética , Senescência Celular/imunologia , Chaperoninas/genética , Proteínas Culina/imunologia , Citocinas/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Regulação Neoplásica da Expressão Gênica/imunologia , Humanos , Interferon gama/imunologia , Proteólise , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Células Th1/efeitos dos fármacos , Células Th1/metabolismo , Vacinação
12.
J Phys Chem A ; 124(8): 1522-1534, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32013429

RESUMO

Adsorption of actinide (Ac = U, Np, Pu) complexes with environmentally relevant ligands on silicene and germanene surfaces has been investigated using density functional theory to determine the geometrical, energetic, and electronic properties. Three types of ligands for each central metal atom are considered: OH-, NO3-, and CO32- with common oxo ligands in all cases. Among these, carbonate complexes show the strongest adsorption followed by hydroxide and nitrate. Two types of model, cluster and periodic models, have been considered to include the short- and long-range effects. The cluster and periodic models are complementary, although the former has not yet been widely used for studies of 2D materials. Two cluster sizes have been investigated to check size dependency. Calculations were performed in the gas phase and water solvent. On the basis of the adsorption energy, for the CO32- and OH- ligands, the bond position between two Si atoms in the silicene sheet is the most strongly adsorbed site in the cluster model for silicene whereas in the periodic model these complexes exhibit strong binding on the Si atom of the silicene surface. The Ac complexes with the NO3- ligand show strong affinity at the hollow space at the center of a hexagonal ring of silicene in both models. The H site is most favorable for the binding of complexes on the germanene cluster whereas these sites vary in the periodic model. Electronic structure calculations have been performed that show a bandgap range from 0.130 to 0.300 eV for the adsorption of actinide complexes on silicene that can be traced to charge transfer. Density of states calculations show that the contribution of the nitrate complexes is small near the Fermi level, but it is larger for the carbonate complexes in the silicene case. Strong interactions between Ac complexes and silicene are due to the formation of strong Si-O bonds upon adsorption which results in reduction of the actinide atom. Such bonding is lacking in germanene.

13.
Crit Rev Immunol ; 40(4): 283-295, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426818

RESUMO

Posttranslational modifications (PTMs) such as protein arginine methylation are involved in the regulation of diverse cellular processes such as epigenetic modifications, DNA damage response (DDR), RNA processing, signal transduction, and immune responses. Protein methyltransferases (PRMTs), which mediate arginine methylation, have been studied because of their dysregulation in several diseases. PRMT5, a type II arginine methyltransferase is relevant to cancer progression. Inhibition/deletion of PRMT5 augments tumor immunity by modulating Tip60 histone acetyltransferase activity and FOXP3 levels and limits the inhibitory function of T regulatory (Treg) cells, providing an approach to treat human cancers in an effective and exclusive manner. The activity of PRMT5 is regulated at various levels involving interaction with regulatory proteins, PTM modifications and noncoding RNA. Several PRMT5 inhibitors have been developed and are undergoing clinical trials or are in the preclinical phases. The current review concerns the regulation, biological functions, and therapeutic approaches for targeting PRMT5 with a focus on its role in tumor immunity. Critically, PRMT5 regulates the expression of Tip60 which we have shown is needed for FOXP3 regulatory interactions with DNA.


Assuntos
Arginina , Neoplasias , Arginina/genética , Arginina/metabolismo , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Humanos , Metilação , Proteína-Arginina N-Metiltransferases/genética
14.
PLoS One ; 13(1): e0191315, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29360877

RESUMO

The high-affinity interaction between biotin and streptavidin has opened avenues for using recombinant proteins with site-specific biotinylation to achieve efficient and directional immobilization. The site-specific biotinylation of proteins carrying a 15 amino acid long Biotin Acceptor Peptide tag (BAP; also known as AviTag) is effected on a specific lysine either by co-expressing the E. coli BirA enzyme in vivo or by using purified recombinant E. coli BirA enzyme in the presence of ATP and biotin in vitro. In this paper, we have designed a T7 promoter-lac operator-based expression vector for rapid and efficient cloning, and high-level cytosolic expression of proteins carrying a C-terminal BAP tag in E. coli with TEV protease cleavable N-terminal deca-histidine tag, useful for initial purification. Furthermore, a robust three-step purification pipeline integrated with well-optimized protocols for TEV protease-based H10 tag removal, and recombinant BirA enzyme-based site-specific in vitro biotinylation is described to obtain highly pure biotinylated proteins. Most importantly, the paper demonstrates superior sensitivities in indirect ELISA with directional and efficient immobilization of biotin-tagged proteins on streptavidin-coated surfaces in comparison to passive immobilization. The use of biotin-tagged proteins through specific immobilization also allows more efficient selection of binders from a phage-displayed naïve antibody library. In addition, for both these applications, specific immobilization requires much less amount of protein as compared to passive immobilization and can be easily multiplexed. The simplified strategy described here for the production of highly pure biotin-tagged proteins will find use in numerous applications, including those, which may require immobilization of multiple proteins simultaneously on a solid surface.


Assuntos
Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Biotina/metabolismo , Ensaio de Imunoadsorção Enzimática/métodos , Biblioteca de Peptídeos , Testes Sorológicos/métodos , Sequência de Aminoácidos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Biotinilação , Carbono-Nitrogênio Ligases/metabolismo , Clonagem Molecular , Citosol/metabolismo , Escherichia coli/citologia , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Vetores Genéticos/genética , Indicadores e Reagentes/metabolismo , Mycobacterium tuberculosis/genética , Proteínas Repressoras/metabolismo
15.
PLoS One ; 9(10): e111538, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25360695

RESUMO

Herein, we describe a novel cloning strategy for PCR-amplified DNA which employs the type IIs restriction endonuclease BsaI to create a linearized vector with four base-long 5'-overhangs, and T4 DNA polymerase treatment of the insert in presence of a single dNTP to create vector-compatible four base-long overhangs. Notably, the insert preparation does not require any restriction enzyme treatment. The BsaI sites in the vector are oriented in such a manner that upon digestion with BsaI, a stuffer sequence along with both BsaI recognition sequences is removed. The sequence of the four base-long overhangs produced by BsaI cleavage were designed to be non-palindromic, non-compatible to each other. Therefore, only ligation of an insert carrying compatible ends allows directional cloning of the insert to the vector to generate a recombinant without recreating the BsaI sites. We also developed rapid protocols for insert preparation and cloning, by which the entire process from PCR to transformation can be completed in 6-8 h and DNA fragments ranging in size from 200 to 2200 bp can be cloned with equal efficiencies. One protocol uses a single tube for insert preparation if amplification is performed using polymerases with low 3'-exonuclease activity. The other protocol is compatible with any thermostable polymerase, including those with high 3'-exonuclease activity, and does not significantly increase the time required for cloning. The suitability of this method for high-throughput cloning was demonstrated by cloning batches of 24 PCR products with nearly 100% efficiency. The cloning strategy is also suitable for high efficiency cloning and was used to construct large libraries comprising more than 108 clones/µg vector. Additionally, based on this strategy, a variety of vectors were constructed for the expression of proteins in E. coli, enabling large number of different clones to be rapidly generated.


Assuntos
Clonagem Molecular/métodos , Enzimas de Restrição do DNA/metabolismo , Biblioteca Gênica , Ensaios de Triagem em Larga Escala/métodos , Reação em Cadeia da Polimerase/métodos , Expressão Gênica , Vetores Genéticos/genética , Genoma , Dados de Sequência Molecular
16.
PLoS One ; 8(9): e75212, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24086469

RESUMO

Phagemid-based expression of cloned genes fused to the gIIIP coding sequence and rescue using helper phages, such as VCSM13, has been used extensively for constructing large antibody phage display libraries. However, for randomly primed cDNA and gene fragment libraries, this system encounters reading frame problems wherein only one of 18 phages display the translated foreign peptide/protein fused to phagemid-encoded gIIIP. The elimination of phages carrying out-of-frame inserts is vital in order to improve the quality of phage display libraries. In this study, we designed a novel helper phage, AGM13, which carries trypsin-sensitive sites within the linker regions of gIIIP. This renders the phage highly sensitive to trypsin digestion, which abolishes its infectivity. For open reading frame (ORF) selection, the phagemid-borne phages are rescued using AGM13, so that clones with in-frame inserts express fusion proteins with phagemid-encoded trypsin-resistant gIIIP, which becomes incorporated into the phages along with a few copies of AGM13-encoded trypsin-sensitive gIIIP. In contrast, clones with out-of-frame inserts produce phages carrying only AGM13-encoded trypsin-sensitive gIIIP. Trypsin treatment of the phage population renders the phages with out-of-frame inserts non-infectious, whereas phages carrying in-frame inserts remain fully infectious and can hence be enriched by infection. This strategy was applied efficiently at a genome scale to generate an ORF-enriched whole genome fragment library from Mycobacterium tuberculosis, in which nearly 100% of the clones carried in-frame inserts after selection. The ORF-enriched libraries were successfully used for identification of linear and conformational epitopes for monoclonal antibodies specific to mycobacterial proteins.


Assuntos
Bacteriófagos/genética , Epitopos/genética , Biblioteca de Peptídeos , Anticorpos Monoclonais/genética , DNA Complementar/genética , Mycobacterium tuberculosis/imunologia , Fases de Leitura Aberta/genética , Tripsina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...