Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bull Math Biol ; 83(6): 68, 2021 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-33966172

RESUMO

Non-small-cell lung carcinoma is a frequent type of lung cancer with a bad prognosis. Depending on the stage and genomics, several therapeutical approaches are used. Tyrosine Kinase Inhibitors (TKI) may be successful for a time in the treatment of EGFR-mutated non-small cells lung carcinoma. Our objective is here to introduce a survival assessment as their efficacy in the long run is challenging to evaluate. The study includes 17 patients diagnosed with EGFR-mutated non-small cell lung cancer and exposed to an EGFR-targeting TKI with 3 computed tomography (CT) scans of the primary tumor (one before the TKI introduction and two after). An imaging biomarker based on evolution of texture heterogeneity between the first and the third exams is derived and computed from a mathematical model and patient data. Defining the overall survival as the time between the introduction of the TKI treatment and the patient death, we obtain a statistically significant correlation between the overall survival and our imaging marker ([Formula: see text]). Using the ROC curve, the patients are separated into two populations and the comparison of the survival curves is statistically significant ([Formula: see text]). The baseline exam seems to have a significant role in the prediction of response to TKI treatment. More precisely, our imaging biomarker defined using only the CT scan before the TKI introduction allows to determine a first classification of the population which is improved over time using the imaging marker as soon as more CT scans are available. This exploratory study leads us to think that it is possible to obtain a survival assessment using only few CT scans of the primary tumor.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Inibidores de Proteínas Quinases , Biomarcadores , Carcinoma Pulmonar de Células não Pequenas/diagnóstico por imagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Receptores ErbB/genética , Humanos , Neoplasias Pulmonares/diagnóstico por imagem , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Modelos Teóricos , Mutação , Inibidores de Proteínas Quinases/uso terapêutico , Análise de Sobrevida
2.
Med Image Anal ; 69: 101950, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33421920

RESUMO

Segmentation of abdominal organs has been a comprehensive, yet unresolved, research field for many years. In the last decade, intensive developments in deep learning (DL) introduced new state-of-the-art segmentation systems. Despite outperforming the overall accuracy of existing systems, the effects of DL model properties and parameters on the performance are hard to interpret. This makes comparative analysis a necessary tool towards interpretable studies and systems. Moreover, the performance of DL for emerging learning approaches such as cross-modality and multi-modal semantic segmentation tasks has been rarely discussed. In order to expand the knowledge on these topics, the CHAOS - Combined (CT-MR) Healthy Abdominal Organ Segmentation challenge was organized in conjunction with the IEEE International Symposium on Biomedical Imaging (ISBI), 2019, in Venice, Italy. Abdominal organ segmentation from routine acquisitions plays an important role in several clinical applications, such as pre-surgical planning or morphological and volumetric follow-ups for various diseases. These applications require a certain level of performance on a diverse set of metrics such as maximum symmetric surface distance (MSSD) to determine surgical error-margin or overlap errors for tracking size and shape differences. Previous abdomen related challenges are mainly focused on tumor/lesion detection and/or classification with a single modality. Conversely, CHAOS provides both abdominal CT and MR data from healthy subjects for single and multiple abdominal organ segmentation. Five different but complementary tasks were designed to analyze the capabilities of participating approaches from multiple perspectives. The results were investigated thoroughly, compared with manual annotations and interactive methods. The analysis shows that the performance of DL models for single modality (CT / MR) can show reliable volumetric analysis performance (DICE: 0.98 ± 0.00 / 0.95 ± 0.01), but the best MSSD performance remains limited (21.89 ± 13.94 / 20.85 ± 10.63 mm). The performances of participating models decrease dramatically for cross-modality tasks both for the liver (DICE: 0.88 ± 0.15 MSSD: 36.33 ± 21.97 mm). Despite contrary examples on different applications, multi-tasking DL models designed to segment all organs are observed to perform worse compared to organ-specific ones (performance drop around 5%). Nevertheless, some of the successful models show better performance with their multi-organ versions. We conclude that the exploration of those pros and cons in both single vs multi-organ and cross-modality segmentations is poised to have an impact on further research for developing effective algorithms that would support real-world clinical applications. Finally, having more than 1500 participants and receiving more than 550 submissions, another important contribution of this study is the analysis on shortcomings of challenge organizations such as the effects of multiple submissions and peeking phenomenon.


Assuntos
Algoritmos , Tomografia Computadorizada por Raios X , Abdome/diagnóstico por imagem , Humanos , Fígado
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...