Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Carbohydr Polym ; 246: 116652, 2020 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-32747284

RESUMO

Polysaccharides are promising macromolecular platforms for use in the life sciences. Here, bioactive cellulose, pullulan, and dextran valproates are characterized hydrodynamically by sedimentation velocity and thermodynamically by sedimentation equilibrium analytical ultracentrifugation. Using sedimentation-diffusion analysis of sedimentation velocity experiments by numerical solution of the Lamm equation enabled the calculation of sedimentation and diffusion coefficients, and consequently molar masses. Sedimentation equilibrium experiments were then also used to determine the average molar masses. The corresponding set of data, with independently performed self-diffusion measurements by nuclear magnetic resonance spectroscopy, and together with size exclusion chromatography molar masses by coupling to refractive index-, viscometric-, and multi-angle laser light scattering detection, were subsequently correlated to each other by the hydrodynamic invariant and sedimentation parameter. We assess statistically most relevant average values of the molar masses of these polysaccharide valproates with relevant macromolecular conformational characteristics.


Assuntos
Celulose/química , Dextranos/química , Glucanos/química , Ácido Valproico/química , Cromatografia em Gel , Difusão , Hidrodinâmica , Cinética , Espectroscopia de Ressonância Magnética , Peso Molecular , Soluções , Relação Estrutura-Atividade , Termodinâmica , Ultracentrifugação
2.
Polymers (Basel) ; 12(2)2020 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-32023874

RESUMO

The interrelation of experimental rotational and translational hydrodynamic friction data as a basis for the study of macromolecules in solution represents a useful attempt for the verification of hydrodynamic information. Such interrelation originates from the basic development of colloid and macromolecular science and has proven to be a powerful tool for the study of naturally- and synthetically-based, i.e., artificial, macromolecules. In this tutorial review, we introduce this very basic concept with a brief historical background, the governing physical principles, and guidelines for anyone making use of it. This is because very often data to determine such an interrelation are available and it only takes a set of simple equations for it to be established. We exemplify this with data collected over recent years, focused primarily on water-based macromolecular systems and with relevance for pharmaceutical applications. We conclude with future incentives and opportunities for verifying an advanced design and tailored properties of natural/synthetic macromolecular materials in a dispersed or dissolved manner, i.e., in solution. Particular importance for the here outlined concept emanates from the situation that the classical scaling relationships of Kuhn-Mark-Houwink-Sakurada, most frequently applied in macromolecular science, are fulfilled, once the hydrodynamic invariant and/or sedimentation parameter are established. However, the hydrodynamic invariant and sedimentation parameter concept do not require a series of molar masses for their establishment and can help in the verification of a sound estimation of molar mass values of macromolecules.

3.
Carbohydr Polym ; 229: 115452, 2020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-31826409

RESUMO

One of the most abundant natural macromolecule, cellulose, is of high importance in technological research including medicine, energy application platforms, and many more. One of its most important ionic derivatives, sodium carboxymethyl cellulose, is known to be very disperse and heterogeneous. The experimental robustness of the methods of hydrodynamics and light scattering are put to test by studying these highly disperse, charged, and heterogeneous macromolecule populations. The following opportunities for molar mass estimations from experimental data were taken into consideration: (i) from the classical Svedberg equation, (ii) from size exclusion chromatography coupled to multi-angle laser light scattering, (iii) from the hydrodynamic invariant, and (iv) the sedimentation parameter. The orthogonality of such approach demonstrates a statistically robust assessment of chain conformational and chain dimensional characteristics of macromolecule populations. Quantitative comparison between the absolute techniques indicates that those have to be checked for accuracy of the obtained and derived characteristics.

4.
ACS Biomater Sci Eng ; 3(3): 304-312, 2017 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33465929

RESUMO

Polymer conjugated biologics form a multibillion dollar market, dominated by poly(ethylene glycol) (PEG). Recent reports linked PEGs to immunological concerns, fueling the need for alternative polymers. Therefore, we are presenting a strategy replacing PEG by poly(2-oxazoline) (POx) polymers using genetically engineered interleukin-4 (IL-4) featuring an unnatural amino acid for site-specific conjugation through bioorthogonal copper-catalyzed azide alkyne cycloaddition (CuAAC). Conjugation yields of IL-4-PEG were poor and did not respond to an increase in the copper catalyst. In contrast, POxylated IL-4 conjugates resulted in homogeneous conjugate outcome, as demonstrated electrophoretically by size exclusion chromatography and analytical ultracentrifugation. Furthermore, POxylation did not impair thermal and chemical stability, and preserved wild-type IL-4 activity for the conjugates as demonstrated by TF-1 cell proliferation and STAT-6 phosphorylation in HEK293T cells, respectively. In conclusion, POxylation provides an interesting alternative to PEGylation with superior outcome for the synthesis yield by CuAAC and resulting in conjugates with excellent thermal and chemical stress profiles as well as biological performances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA