Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
J Nat Prod ; 84(1): 81-90, 2021 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-33397096

RESUMO

Cyclotides are plant-derived peptides found within five families of flowering plants (Violaceae, Rubiaceae, Fabaceae, Solanaceae, and Poaceae) that have a cyclic backbone and six conserved cysteine residues linked by disulfide bonds. Their presence within the Violaceae species seems ubiquitous, yet not all members of other families produce these macrocyclic peptides. The genus Palicourea Aubl. (Rubiaceae) contains hundreds of neotropical species of shrubs and small trees; however, only a few cyclotides have been discovered hitherto. Herein, five previously uncharacterized Möbius cyclotides within Palicourea sessilis and their pharmacological activities are described. Cyclotides were isolated from leaves and stems of this plant and identified as pase A-E, as well as the known peptide kalata S. Cyclotides were de novo sequenced by MALDI-TOF/TOF mass spectrometry, and their structures were solved by NMR spectroscopy. Because some cyclotides have been reported to modulate immune cells, pase A-D were assayed for cell proliferation of human primary activated T lymphocytes, and the results showed a dose-dependent antiproliferative function. The toxicity on other nonimmune cells was also assessed. This study reveals that pase cyclotides have potential for applications as immunosuppressants and in immune-related disorders.


Assuntos
Ciclotídeos/efeitos dos fármacos , Ciclotídeos/metabolismo , Fabaceae/química , Linfócitos/metabolismo , Solanaceae/química , Violaceae/química , Brasil , Ciclotídeos/química , Humanos , Linfócitos/química , Linfócitos/efeitos dos fármacos , Magnoliopsida , Espectrometria de Massas , Folhas de Planta/química , Folhas de Planta/metabolismo
2.
J Nat Prod ; 81(5): 1203-1208, 2018 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-29757646

RESUMO

Two new bracelet cyclotides from roots of Pombalia calceolaria with potential anticancer activity have been characterized in this work. The cyclotides Poca A and B (1 and 2) and the previously known CyO4 (3) were de novo sequenced by MALDI-TOF/TOF mass spectrometry (MS). The MS2 spectra were examined and the amino acid sequences were determined. The purified peptides were tested for their cytotoxicity and effects on cell migration of MDA-MB-231, a triple-negative breast cancer cell line. The isolated cyclotides reduced the number of cancer cells by more than 80% at 20 µM, and the concentration-related cytotoxic responses were observed with IC50 values of 1.8, 2.7, and 9.8 µM for Poca A (1), Poca B (2), and CyO4 (3), respectively. Additionally, the inhibition of cell migration (wound-healing assay) exhibited that CyO4 (3) presents an interesting activity profile, in being able to inhibit cell migration (50%) at a subtoxic concentration (2 µM). The distribution of these cyclotides in the roots was analyzed by MALDI imaging, demonstrating that all three compounds are present in the phloem and cortical parenchyma regions.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Calceolariaceae/química , Movimento Celular/efeitos dos fármacos , Ciclotídeos/química , Ciclotídeos/farmacologia , Sequência de Aminoácidos , Linhagem Celular Tumoral , Citotoxinas/química , Citotoxinas/farmacologia , Feminino , Humanos , Raízes de Plantas/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos
3.
J Nat Prod ; 78(3): 374-80, 2015 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-25699574

RESUMO

A new orbitide named ribifolin was isolated and characterized from Jatropha ribifolia using mass spectrometry, NMR spectroscopy, quantitative amino acid analysis, molecular dynamics/simulated annealing, and Raman optical activity measurements and calculations. Ribifolin (1) and its linear form (1a) were synthesized by solid-phase peptide synthesis, followed by evaluation of its antiplasmodial and cytotoxicity activities. Compound 1 was moderately effective (IC50 = 42 µM) against the Plasmodium falciparum strain 3D7.


Assuntos
Antimaláricos , Jatropha/química , Peptídeos Cíclicos , Plasmodium falciparum/efeitos dos fármacos , Antimaláricos/química , Antimaláricos/isolamento & purificação , Antimaláricos/farmacologia , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Testes de Sensibilidade Parasitária , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Extratos Vegetais/química , Técnicas de Síntese em Fase Sólida
4.
Phytochemistry ; 71(1): 13-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19879608

RESUMO

Cyclotides are disulfide-rich plant proteins that are exceptional in their cyclic structure; their N and C termini are joined by a peptide bond, forming a continuous circular backbone, which is reinforced by three interlocked disulfide bonds. Cyclotides have been found mainly in the coffee (Rubiaceae) and violet (Violaceae) plant families. Within the Violaceae, cyclotides seem to be widely distributed, but the cyclotide complements of the vast majority of Violaceae species have not yet been explored. This study provides insight into cyclotide occurrence, diversity and biosynthesis in the Violaceae, by identifying mature cyclotide proteins, their precursors and enzymes putatively involved in their biosynthesis in the tribe Rinoreeae and the genus Gloeospermum. Twelve cyclotides from two Panamanian species, Gloeospermum pauciflorum Hekking and Gloeospermum blakeanum (Standl.) Hekking (designated Glopa A-E and Globa A-G, respectively) were characterised through cDNA screening and protein isolation. Screening of cDNA for the oxidative folding enzymes protein-disulfide isomerase (PDI) and thioredoxin (TRX) resulted in positive hits in both species. These enzymes have demonstrated roles in oxidative folding of cyclotides in Rubiaceae, and results presented here indicate that Violaceae plants have evolved similar mechanisms of cyclotide biosynthesis. We also describe PDI and TRX sequences from a third cyclotide-expressing Violaceae species, Viola biflora L., which further support this hypothesis.


Assuntos
Ciclotídeos/biossíntese , Genes de Plantas , Proteínas de Plantas/metabolismo , Isomerases de Dissulfetos de Proteínas/metabolismo , Tiorredoxinas/metabolismo , Violaceae/metabolismo , Sequência de Aminoácidos , Ciclotídeos/química , Ciclotídeos/isolamento & purificação , DNA Complementar , Dados de Sequência Molecular , Panamá , Folhas de Planta , Proteínas de Plantas/genética , Isomerases de Dissulfetos de Proteínas/genética , Dobramento de Proteína , Tiorredoxinas/genética , Violaceae/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA