Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(4): e2577, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35191120

RESUMO

Risk assessments are fundamental to invasive species management and are underpinned by comprehensive characterization of invasive species impacts. Our understanding of the impacts of invasive species is growing constantly, and several recently developed frameworks offer the opportunity to systematically categorize environmental and socioeconomic impacts of invasive species. Invasive ants are among the most widespread and damaging invaders. Although a handful of species receives most of the policy attention, nearly 200 species have established outside their native range. Here, we provide a global, comprehensive assessment of the impacts of ants and propose a priority list of risk species. We used the Socioeconomic Impact Classification for Alien Taxa (SEICAT), Environmental Impact Classification for Alien Taxa (EICAT) and Generic Impact Scoring System (GISS) to analyze 642 unique sources for 100 named species. Different methodologies provided generally consistent results. The most frequently identified socioeconomic impacts were to human health. Environmental impacts were primarily on animal and plant populations, with the most common mechanisms being predation and competition. Species recognized as harmful nearly 20 years ago featured prominently, including Wasmannia auropunctata (little fire ant, electric ant), Solenopsis invicta (red imported fire ant), Anoplolepis gracilipes (yellow crazy ant), and Pheidole megacephala (African big-headed ant). All these species except W. auropunctata have been implicated in local extinctions of native species. Although our assessments affirmed that the most serious impacts have been driven by a small number of species, our results also highlighted a substantial number of less well publicized species that have had major environmental impacts and may currently be overlooked when prioritizing prevention efforts. Several of these species were ranked as high or higher than some of the previously recognized "usual suspects," most notably Nylanderia fulva (tawny crazy ant). We compared and combined our assessments with trait-based profiles and other lists to propose a consensus set of 31 priority species. Ever-increasing global trade contributes to growing rates of species introductions. The integrated approaches we used can contribute to robust, holistic risk assessments for many taxa entrained in these pathways.


Assuntos
Formigas , Animais , Espécies Introduzidas , Medição de Risco , Fatores Socioeconômicos
2.
Viruses ; 13(8)2021 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-34452301

RESUMO

Wasps of the genus Vespula are social insects that have become major pests and predators in their introduced range. Viruses present in these wasps have been studied in the context of spillover from honey bees, yet we lack an understanding of the endogenous virome of wasps as potential reservoirs of novel emerging infectious diseases. We describe the characterization of 68 novel and nine previously identified virus sequences found in transcriptomes of Vespula vulgaris in colonies sampled from their native range (Belgium) and an invasive range (New Zealand). Many viruses present in the samples were from the Picorna-like virus family (38%). We identified one Luteo-like virus, Vespula vulgaris Luteo-like virus 1, present in the three life stages examined in all colonies from both locations, suggesting this virus is a highly prevalent and persistent infection in wasp colonies. Additionally, we identified a novel Iflavirus with similarity to a recently identified Moku virus, a known wasp and honey bee pathogen. Experimental infection of honey bees with this novel Vespula vulgaris Moku-like virus resulted in an active infection. The high viral diversity present in these invasive wasps is a likely indication that their polyphagous diet is a rich source of viral infections.


Assuntos
Abelhas/virologia , Vírus de Insetos/isolamento & purificação , Vírus de Insetos/fisiologia , Vírus de RNA/isolamento & purificação , Vírus de RNA/fisiologia , Viroma , Vespas/virologia , Animais , Vírus de Insetos/classificação , Vírus de Insetos/genética , Vírus de RNA/classificação , Vírus de RNA/genética , Carga Viral , Replicação Viral
4.
G3 (Bethesda) ; 10(10): 3479-3488, 2020 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-32859687

RESUMO

Social wasps of the genus Vespula have spread to nearly all landmasses worldwide and have become significant pests in their introduced ranges, affecting economies and biodiversity. Comprehensive genome assemblies and annotations for these species are required to develop the next generation of control strategies and monitor existing chemical control. We sequenced and annotated the genomes of the common wasp (Vespula vulgaris), German wasp (Vespula germanica), and the western yellowjacket (Vespula pensylvanica). Our chromosome-level Vespula assemblies each contain 176-179 Mb of total sequence assembled into 25 scaffolds, with 10-200 unanchored scaffolds, and 16,566-18,948 genes. We annotated gene sets relevant to the applied management of invasive wasp populations, including genes associated with spermatogenesis and development, pesticide resistance, olfactory receptors, immunity and venom. These genomes provide evidence for active DNA methylation in Vespidae and tandem duplications of venom genes. Our genomic resources will contribute to the development of next-generation control strategies, and monitoring potential resistance to chemical control.


Assuntos
Vespas , Animais , Genômica , Vespas/genética
5.
Mol Ecol ; 28(14): 3324-3338, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31233636

RESUMO

Despite the mitochondrion's long-recognized role in energy production, mitochondrial DNA (mtDNA) variation commonly found in natural populations was assumed to be effectively neutral. However, variation in mtDNA has now been increasingly linked to phenotypic variation in life history traits and fitness. We examined whether the relative fitness in native and invasive common wasp (Vespula vulgaris) populations in Belgium and New Zealand (NZ), respectively, can be linked to mtDNA variation. Social wasp colonies in NZ were smaller with comparatively fewer queen cells, indicating a reduced relative fitness in the invaded range. Interestingly, queen cells in this population were significantly larger leading to larger queen offspring. By sequencing 1,872 bp of the mitochondrial genome, we determined mitochondrial haplotypes and detected reduced genetic diversity in NZ. Three common haplotypes in NZ frequently produced many queens, whereas the four rare haplotypes produced significantly fewer or no queens. The entire mitochondrial genome for each of these haplotypes was sequenced to identify polymorphisms associated with fitness reduction. We found 16 variable sites; however, no nonsynonymous mutation that was clearly causing impaired mitochondrial function was detected. We discuss how detected variants may alter secondary structures, gene expression or mito-nuclear interactions, or could be associated with nuclear-encoded variation. Whatever the ultimate mechanism, we show reduced fitness and mtDNA variation in an invasive wasp population as well as specific mtDNA variants associated with fitness variation within this population. Ours is one of only a few studies that confirm fitness impacts of mtDNA variation in wild nonmodel populations.


Assuntos
Variação Genética , Espécies Introduzidas , Mitocôndrias/genética , Vespas/genética , Animais , Bélgica , DNA Circular/genética , Genética Populacional , Genoma Mitocondrial , Geografia , Haplótipos/genética , Nova Zelândia , Análise de Sequência de DNA
6.
J Anim Ecol ; 87(6): 1653-1666, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30047994

RESUMO

Once established in new areas, introduced species may exhibit changes in their biology due to phenotypic plasticity, novel selection pressures and genetic drift. Moreover, the introduction process itself has been hypothesised to act as a selective filter for traits that promote invasiveness. We tested the hypothesis that behaviours thought to promote invasiveness-such as increased foraging activity and aggression-are selected for during invasion by comparing traits among native and introduced populations of the widespread Argentine ant (Linepithema humile). We studied Argentine ant populations in the native range in Argentina and in three invaded regions along an introduction pathway: California, Australia and New Zealand. In each region, we set up 32 experimental colonies to measure foraging activity and interspecific aggression in a subset of the study regions. These colonies were subject to experimental manipulation of carbohydrate availability and octopamine, a biogenic amine known to modulate behaviour in insects, to measure variation in behavioural plasticity. We found variation in foraging activity among populations, but this variation was not consistent with selection on behaviour in relation to the invasion process. We found that colonies with limited access to carbohydrates exhibited unchanged exploratory behaviour, but higher exploitation activity and lower aggression. Colonies given octopamine consistently increased foraging behaviour (both exploration and exploitation), as well as aggression when also sugar-deprived. There was no difference in the degree of behavioural response to our experimental treatments along the introduction pathway. We did not find support for selection of behavioural traits associated with invasiveness along the Argentine ant's introduction pathway or clear evidence for an association between the introduction process and variation in behavioural plasticity. These results indicate that mechanisms promote behavioural variation in a similar fashion both in native and introduced ranges. Our results challenge the assumption that introduced populations always perform better in key behavioural traits hypothesised to be associated with invasion success.


Assuntos
Formigas , Animais , Argentina , Austrália , California , Nova Zelândia
7.
PLoS One ; 13(12): e0209589, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30596703

RESUMO

Social wasps are a major pest in many countries around the world. Pathogens may influence wasp populations and could provide an option for population management via biological control. We investigated the pathology of nests of apparently healthy common wasps, Vespula vulgaris, with nests apparently suffering disease. First, next-generation sequencing and metatranscriptomic analysis were used to examine pathogen presence. The transcriptome of healthy and diseased V. vulgaris showed 27 known microbial phylotypes. Four of these were observed in diseased larvae alone (Aspergillus fumigatus, Moellerella wisconsensis, Moku virus, and the microsporidian Vavraia culicis). Kashmir Bee Virus (KBV) was found to be present in both healthy and diseased larvae. Moellerella wisconsensis is a human pathogen that was potentially misidentified in our wasps by the MEGAN analysis: it is more likely to be the related bacteria Hafnia alvei that is known to infect social insects. The closest identification to the putative pathogen identified as Vavraia culicis was likely to be another microsporidian Nosema vulgaris. PCR and subsequent Sanger sequencing using published or our own designed primers, confirmed the identity of Moellerella sp. (which may be Hafnia alvei), Aspergillus sp., KBV, Moku virus and Nosema. Secondly, we used an infection study by homogenising diseased wasp larvae and feeding them to entire nests of larvae in the laboratory. Three nests transinfected with diseased larvae all died within 19 days. No pathogen that we monitored, however, had a significantly higher prevalence in diseased than in healthy larvae. RT-qPCR analysis indicated that pathogen infections were significantly correlated, such as between KBV and Aspergillus sp. Social wasps clearly suffer from an array of pathogens, which may lead to the collapse of nests and larval death.


Assuntos
Interações Hospedeiro-Patógeno , Metagenoma , Metagenômica , Microbiota , Vespas/microbiologia , Animais , Perfilação da Expressão Gênica/métodos , Larva/microbiologia , Filogenia , Vespas/ultraestrutura
8.
Sci Rep ; 7(1): 3304, 2017 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607437

RESUMO

Social insects host a diversity of viruses. We examined New Zealand populations of the globally widely distributed invasive Argentine ant (Linepithema humile) for RNA viruses. We used metatranscriptomic analysis, which identified six potential novel viruses in the Dicistroviridae family. Of these, three contigs were confirmed by Sanger sequencing as Linepithema humile virus-1 (LHUV-1), a novel strain of Kashmir bee virus (KBV) and Black queen cell virus (BQCV), while the others were chimeric or misassembled sequences. We extended the known sequence of LHUV-1 to confirm its placement in the Dicistroviridae and categorised its relationship to closest relatives, which were all viruses infecting Hymenoptera. We examined further for known viruses by mapping our metatranscriptomic sequences to all viral genomes, and confirmed KBV, BQCV, LHUV-1 and Deformed wing virus (DWV) presence using qRT-PCR. Viral replication was confirmed for DWV, KBV and LHUV-1. Viral titers in ants were higher in the presence of honey bee hives. Argentine ants appear to host a range of' honey bee' pathogens in addition to a virus currently described only from this invasive ant. The role of these viruses in the population dynamics of the ant remain to be determined, but offer potential targets for biocontrol approaches.


Assuntos
Formigas/virologia , Vírus de RNA/fisiologia , Animais , Genoma Viral , Nova Zelândia , Fases de Leitura Aberta/genética , Filogenia , Vírus de RNA/genética , Transcriptoma/genética
9.
Ecology ; 98(3): 861-874, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28039867

RESUMO

Biological invasions are a threat to global biodiversity and provide unique opportunities to study ecological processes. Population bottlenecks are a common feature of biological invasions and the severity of these bottlenecks is likely to be compounded as an invasive species spreads from initial invasion sites to additional locations. Despite extensive work on the genetic consequences of bottlenecks, we know little about how they influence microbial communities of the invaders themselves. Due to serial bottlenecks, invasive species may lose microbial symbionts including pathogenic taxa (the enemy release hypothesis) and/or may accumulate natural enemies with increasing time after invasion (the pathogen accumulation and invasive decline hypothesis). We tested these alternate hypotheses by surveying bacterial communities of Argentine ants (Linepithema humile). We found evidence for serial symbiont bottlenecks: the bacterial community richness declined over the invasion pathway from Argentina to New Zealand. The abundance of some genera, such as Lactobacillus, also significantly declined over the invasion pathway. Argentine ants from populations in the United States shared the most genera with ants from their native range in Argentina, while New Zealand shared the least (120 vs. 57, respectively). Nine genera were present in all sites around the globe possibly indicating a core group of obligate microbes. In accordance with the pathogen accumulation and invasive decline hypothesis, Argentine ants acquired genera unique to each specific invaded country. The United States had the most unique genera, though even within New Zealand these ants acquired symbionts. In addition to our biogeographic sampling, we administered antibiotics to Argentine ants to determine if changes in the micro-symbiont community could influence behavior and survival in interspecific interactions. Treatment with the antibiotics spectinomycin and kanamycin only slightly increased Argentine ant interspecific aggression, but this increase significantly decreased survival in interspecific interactions. The survival of the native ant species also decreased when the symbiotic microbial community within Argentine ants was modified by antibiotics. Our work offers support for both the enemy release hypothesis and that invasive species accumulate novel microbial taxa within their invaded range. These changes appear likely to influence invader behavior and survival.


Assuntos
Formigas/fisiologia , Espécies Introduzidas , Simbiose , Animais , Argentina , Nova Zelândia
10.
Biol Lett ; 11(9): 20150610, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26562935

RESUMO

When exotic animal species invade new environments they also bring an often unknown microbial diversity, including pathogens. We describe a novel and widely distributed virus in one of the most globally widespread, abundant and damaging invasive ants (Argentine ants, Linepithema humile). The Linepithema humile virus 1 is a dicistrovirus, a viral family including species known to cause widespread arthropod disease. It was detected in samples from Argentina, Australia and New Zealand. Argentine ants in New Zealand were also infected with a strain of Deformed wing virus common to local hymenopteran species, which is a major pathogen widely associated with honeybee mortality. Evidence for active replication of viral RNA was apparent for both viruses. Our results suggest co-introduction and exchange of pathogens within local hymenopteran communities. These viral species may contribute to the collapse of Argentine ant populations and offer new options for the control of a globally widespread invader.


Assuntos
Formigas/virologia , Vírus de Insetos/isolamento & purificação , Espécies Introduzidas , Picornaviridae/isolamento & purificação , RNA Viral/isolamento & purificação , Animais , Argentina , Austrália , Abelhas/virologia , Vírus de Insetos/classificação , Vírus de Insetos/genética , Metagenômica , Nova Zelândia , Picornaviridae/classificação , Picornaviridae/genética , RNA Viral/classificação , RNA Viral/genética
11.
PLoS One ; 10(3): e0121358, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25798856

RESUMO

When invasive species move to new environments they typically experience population bottlenecks that limit the probability that pathogens and parasites are also moved. The invasive species may thus be released from biotic interactions that can be a major source of density-dependent mortality, referred to as enemy release. We examined for evidence of enemy release in populations of the common wasp (Vespula vulgaris), which attains high densities and represents a major threat to biodiversity in its invaded range. Mass spectrometry proteomic methods were used to compare the microbial communities in wasp populations in the native (Belgium and England) and invaded range (Argentina and New Zealand). We found no evidence of enemy release, as the number of microbial taxa was similar in both the introduced and native range. However, some evidence of distinctiveness in the microbial communities was observed between countries. The pathogens observed were similar to a variety of taxa observed in honey bees. These taxa included Nosema, Paenibacillus, and Yersina spp. Genomic methods confirmed a diversity of Nosema spp., Actinobacteria, and the Deformed wing and Kashmir bee viruses. We also analysed published records of bacteria, viruses, nematodes and fungi from both V. vulgaris and the related invader V. germanica. Thirty-three different microorganism taxa have been associated with wasps including Kashmir bee virus and entomophagous fungi such as Aspergillus flavus. There was no evidence that the presence or absence of these microorganisms was dependent on region of wasp samples (i.e. their native or invaded range). Given the similarity of the wasp pathogen fauna to that from honey bees, the lack of enemy release in wasp populations is probably related to spill-over or spill-back from bees and other social insects. Social insects appear to form a reservoir of generalist parasites and pathogens, which makes the management of wasp and bee disease difficult.


Assuntos
Ecossistema , Microbiota , Vespas/microbiologia , Distribuição Animal , Animais , Espécies Introduzidas , Vespas/fisiologia
12.
Ecol Evol ; 2(9): 2091-105, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23139870

RESUMO

Many introduced species become invasive despite genetic bottlenecks that should, in theory, decrease the chances of invasion success. By contrast, population genetic bottlenecks have been hypothesized to increase the invasion success of unicolonial ants by increasing the genetic similarity between descendent populations, thus promoting co-operation. We investigated these alternate hypotheses in the unicolonial yellow crazy ant, Anoplolepis gracilipes, which has invaded Arnhem Land in Australia's Northern Territory. We used momentary abundance as a surrogate measure of invasion success, and investigated the relationship between A. gracilipes genetic diversity and its abundance, and the effect of its abundance on species diversity and community structure. We also investigated whether selected habitat characteristics contributed to differences in A. gracilipes abundance, for which we found no evidence. Our results revealed a significant positive association between A. gracilipes genetic diversity and abundance. Invaded communities were less diverse and differed in structure from uninvaded communities, and these effects were stronger as A. gracilipes abundance increased. These results contradict the hypothesis that genetic bottlenecks may promote unicoloniality. However, our A. gracilipes study population has diverged since its introduction, which may have obscured evidence of the bottleneck that would likely have occurred on arrival. The relative importance of genetic diversity to invasion success may be context dependent, and the role of genetic diversity may be more obvious in the absence of highly favorable novel ecological conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...